Designing Automation to Reduce Operator Errors

Nancy G. Leveson
Computer Science and Engineering
University of Washington

Everett Palmer
NASA Ames Research Center

Introduction

Advanced automation has been accompanied, particu-
larly in aircraft, with a proliferation of modes, where
modes define mutually exclusive sets of system behavior.
The new mode-rich systems provide flexibility and en-
hanced capabilities, but they also increase the need for
and difficulty of maintaining mode awareness. While au-
tomation has eliminated some types of operator mode-
awareness errors, it has also created the potential for
new types of mode-related problems [SW95].

After studying accidents and incidents in the new,
highly automated aircraft, Sarter and Woods have con-
cluded that certain errors are non-random and pre-
dictable [SW95]: They are the regular and predictable
consequences of a variety of identifiable factors. Al-
though these errors are accentuated by poor interface
design and gaps or misconceptions in the user’s mental
model of the system, an important factor is inconsistent
automation behavior.

Sarter and Woods have identified some of these pre-
dictable error forms. Leveson et. al. [LPS97] and De-
gani [Deg96] have defined taxonomies of automation fea-
tures that lead to mode confusion. This paper describes
an approach to dealing with mode confusion errors by
first modeling blackbox software behavior and then us-
ing analysis methods and tools to assist in searching the
models for predictable error forms, i.e., for features that
contribute to operator mistakes. The analysis results
can be used to redesign the automation, to change op-
erator training and procedures, or to design appropriate
human-computer interfaces to help avoid mistakes.

The approach requires a model of the blackbox behavior
that is both formal and easily readable and reviewable
by humans. The models we use are part of the software
specifications in a methodology called SpecTRM (Speci-
fication Tools and Requirements Methodology) and thus
the analysis is done directly on the system requirements
specification and does not require extra modeling ef-
fort. SpecTRM includes a suite of analysis tools to
detect errors and potentially hazardous behavior early
in system development when tradeoffs and changes can
more easily be made. In addition to providing design

guidance, this approach might provide a way of “mea-
suring” or evaluating the cognitive demands involved
in working with specific automated devices. Hansman
has suggested that automation complexity be defined in
terms of the predictability of the automation behavior
[Hans97]. This predictability can potentially be evalu-
ated on the formal SpecTRM-RL (SpecTRM Require-
ments Language) models.

The rest of the paper provides more information about
the approach and illustrates its use on a commonly re-
ported mode confusion error called a “kill-the-capture”
bust.

Mode Confusion Analysis

Most accidents related to software behavior can be
traced back to errors or omissions in the software re-
quirements, not to implementation or coding errors
[Lev95, Lut93]. Although a great deal of effort has been
expended in software engineering on finding software
design and implementation errors, much less has been
accomplished in terms of validating requirements spec-
ifications beyond executing them for a few test cases
or showing the consistency of a formal specification
with various properties of the underlying mathemati-
cal model [HL96, HLK95]. Most of the specfication er-
rors and omissions that lead to accidents are unlikely to
be found using these techniques. The testing of any
complex software is necessarily very incomplete, and
consistency with a mathematical model does not im-
ply consistency with required properties of a real world
application.

To deal with this problem, we have specified a set of
criteria for completeness and correctness of blackbox
process-control requirements specifications that are re-
lated to safety [JLHM91, Lev95]. These criteria were
derived using real accidents and industrial experience
with process-control software, and they have been vali-
dated by experimental application to the NASA Gallileo
and Voyager software [Lut92, Lut93] and through indus-
trial use. We are contining to extend the criteria, most
recently with the goal of reducing mode confusion er-
rors, and to validate them on real software [MLR97].

Processinputs _______|

Disturbances

;

Controlled Process

Processinputs ____ _|

Controlled Measured
variables variables
Actuators Sensors

Automated
Controller
Internal model
of process
Set points,

Control commands

Supervisor(s)

Figure 1: Simple Control Loop Model

Disturbances

;

Controlled Process

Controlled
variables

Measured
variables

Actuators Sensors

A Automated
Controller

Internal model
of process

Internal model
of supervisory
interface

Displays Controls

Supervisor(s)

Internal model
of process

Internal model
of controller

Figure 2: Modified Model to Account for Operator Er-
ror and Mode Confusion.

| Processoutputs

| Processoutputs

To apply the criteria, a blackbox state-machine model of
the automation behavior is required. Blackbox require-
ments specifications do not contain information about
internal design (the software design if the automated
controller is a computer) but are written strictly in
terms of externally visible inputs and outputs and the
effects of these on a model of the process being con-
trolled (see Figure 1). The process model is based on:

1. Current process state inferred from measured vari-
ables,

2. Past measured and inferred process states and vari-
ables,

3. Past outputs to actuators, and

4. Prediction of future states of the controlled process.

Accidents related to requirements (behavioral) specifi-
cation occur when the internal model of the process be-
comes inconsistent with the state of the controlled pro-
cess. This inconsistency may result from an incorrect
model being specified originally (e.g., the model does
not include basic required behavior for unusual or in-
frequently occurring cases) or from the modeled system
state being updated incorrectly during execution, per-
haps as a result of incorrect input from the sensors.

To define criteria related to mode confusion, we need to
add a model of the controller-software interface to the
automated controller. We also need to consider the su-
pervisors’ internal models of the expected behavior and
state of the process and of the automated controller (see
Figure 2). Accidents in this extended model may result
from any of these models being incorrect or becoming
inconsistent with the true state of the controlled pro-
cess, the automated controller, or the supervisory inter-
face (the human—computer interface). That is, accidents
may result if any of the models are or become inconsis-
tent with the state of the thing they are modeling and
decisions or actions are made on the basis of the incor-
rect model. Criteria for correctness and safety can be
specified in terms of these formal models and checked
for particular system specifications.

Of course, we are not suggesting that it is possible to
specify human mental models. Each person may have a
different mental model of the system and the automa-
tion, and these may change over time within the same
person. In fact, operators have been found to be able to
function with multiple and inconsistent models [Luc87].
However, it is possible to state some high-level abstrac-
tions about required features of correct operator men-
tal models—for example, that particular actions on the
part of the operator will result eventually in particular
changes in the automation and/or the system.

Note that we assume here that the operator’s models are
correct. This assumption will obviously not always be

true. However, our approach involves first eliminating
hazards for the ideal case. Then various types of hazard
analysis can be used to determine which types of erro-
neous models will have the most serious consequences.
The resulting information can be used for automation
design, interface design, and operator training.

A previous paper described six categories of potential
design flaws that can lead to mode confusion errors:
interface interpretation flaws, inconsistent behavior, in-
direct mode changes, operator authority limits, unin-
tended side effects, and lack of appropriate feedback
[LPS97]. The rest of this paper shows an example of
this approach for one particular common cause of mode
confusion error, i.e., indirect mode changes. The ba-
sic criteria and analysis technique is being specified for-
mally [Lev97], but we include only an informal descrip-
tion here.

Indirect Mode Change Example

Indirect mode changes occur when the automation
changes mode without an explicit instruction by the op-
erator. Such transitions may be triggered on conditions
in the controller (such as preprogrammed envelope pro-
tection) or sensor input about the state of the controlled
system (such as achievement of a target value). Indirect
mode transitions create the potential for mode confu-
sion and inadvertent activation of modes by the human
controller. For example, the human controller may not
update his or her models of the state of the process and
the state of the automation and, based on these now in-
correct models, issue an incorrect control command or
fail to issue a required command.

An example of an accident that has been attributed to
an indirect mode change occurred while an A-320 was
landing in Bangalore. In this case, the pilot selection
of a lower altitude while the automation was in the AL-
TITUDE ACQUISITION mode resulted in the activation
of the OPEN DESCENT mode. It has been speculated
that the pilots did not notice the mode annunciation
because the indirect mode change occurred during ap-
proach when the pilots were busy and they were not
expecting the change [SW95]. Another example of such
an indirect mode change in the A-320 automation in-
volves an automatic mode transition triggered when the
airspeed exceeds a predefined limit. For example, if the
pilot selects a very high vertical speed that results in
the airspeed decreasing below a particular limit, the au-
tomation will change to the OPEN CLIMB mode, which
allows the airplane to regain speed.

Palmer has described another example of a common
indirect mode transition problem called a “kill-the-
capture bust” that has been noted in many ASRS re-
ports [Pal96]. Here we show the relevant parts of a
SpecTRM-RL specification of the MD-88 control logic

Thrust Arm Roall Pitch

a Level at 2100t | PP VOR| ALT
186 CAP | HLD

SPD | ALT | VOR| ALT
186 CAP | HLD

b. Enter 5000 ft.

¢ Set VERT/SPD | SPD | ALT | VOR| VERT
186 CAP | SPD

SPD | ALT | VOR | VERT
255 CAP | SPD

d. Enter 255

e. Approaching SPD | ALT | VOR | VERT

4000 ft. 255 TRK | SPD
ALT | VOR
CLMP 1AS
f. PushIAS TRK
g. Automatic SPD VOR| ALT
atitude capture | o5g TRK | CAP
h. Adjust vertica | SPD VOR | VERT
255 TRK | SPD

Figure 3: Flight Mode Annunciator (FMA) Displays for
the Example Incident

and describe how the problem can be detected and fixed.

In the incident, the crew had just made a missed ap-
proach and had climbed to and leveled at 2,100 feet.
Figure 3 shows the sequence of Flight Mode Annun-
ciator (FMA) values during the incident. The crew
received the clearance to “...climb now and maintain
5,000 feet ...”. The Captain set the desired altitude
to 5,000 feet, set the autopilot pitch mode to verti-
cal speed with a value of approximately 2,000 feet per
minute and the autothrottle to SPD mode with a value
of 256 knots (Figure 3(c) and (d)). Climbing through
3,500 feet, the Captain called for flaps up, and at 4,000
feet he called for slats retract and pushed the IAS but-
ton (Figure 3(f)). The pitch mode became IAS, and
the autothrottle went to CLAMP mode. At this point,
altitude capture was still armed. Three seconds later,
the autopilot automatically switched to altitude cap-
ture mode. The arm window went blank, and the pitch
window showed ALT cAP (Figure 3(g)). A tenth of a sec-
ond later, the Captain adjusted the vertical speed wheel
to a value of about 4,000 feet per minute. This speed
adjustment caused the pitch autopilot mode to switch
from altitude capture to vertical speed (Figure 3(h)).
Climbing through 4,500 feet, the FMA was as shown
in Figure 3(h), and the approaching altitude light was
on. As the altitude passed through 5,000 feet at a verti-
cal velocity of about 4,000 feet per minute, the Captain
remarked, “Five thousand. Oops, it didn’t arm.” He
pushed the ALT HOLD button and switched off the au-
tothrottle. The aircraft continued to climb to about

5,500 feet and the ALTITUDE-ALTITUDE voice warning
sounded repeatedly.

To identify and fix the problem, we use a formal model.
A SpecTRM-RL model has two parts: a graphical model
of the state machine and a specification of the logic on
the transitions. Figure 4 shows part of the graphical
SpecTRM-RL state machine model of the MD-88 verti-
cal control logic needed to understand the incident and
how to fix the software to avoid it. In order to keep the
model small enough to fit in the paper, only parts of
it are shown but during system engineering a complete
model would be constructed. The graphical model has
three main parts: the input—output interface (where the
supervisory interface is one part), the operating modes
of the automation itself (in this case the autoflight sys-
tem), and the process model which includes both the
process (aircraft) operating modes and models of the
aircraft components.

In the supervisory interface, square boxes denote in-
puts and outputs having finite state values. Circles rep-
resent numbers. Note that this model represents the
automated controller’s view of the state of the inter-
face, not necessarily the real state of the controls and
displays. A complete safety analysis would evaluate if
and how discrepancies between the two could occur and
also whether such discrepancies could lead to hazardous
system states.

The state transition logic is specified in SpecTRM-RL
using a form of logic tables we call AND/OR tables. A
transition can be taken if any of the columns of the table
evaluates to true. A column evaluates to true if all the
(non-blank) rows in a column are true. Figure 5 shows
the relevant transition logic for the example.

The problem occurs because the transition to ALT CAP
mode results in a transition of the capture mode to UN-
ARMED before the altitude has actually been acquired.
Although this is annunciated to the pilot by the Arm an-
nunciator changing to blank when pitch mode changes
to ALT CAP, the absence of an indicator is well known
to be an error-prone way to notify the pilot of a mode
change.

How could this be detected from examining the logic?
In general, an indirect mode change is one that occurs
without an explicit pilot action to change the mode. The
vertical control logic for the example has three mode
transitions that do not require direct pilot input: (1)
the transition from ANY to ALT CAP, (2) the second col-
umn of the transition from ANY to ALT HOLD, i.e, when
the altitude is acquired and the pitch is in mode ALT
CAP, and (3) the second column of the transition from
ARMED to NOT ARMED. Each of these mode transitions
is triggered by a change in a controlled system variable
or by internal mode change within the automation.

We will assume that the pilot’s mental model includes
a cause and effect relationship between arming the al-
titude capture and eventually (although it may not be
immediately) acquiring that altitude and holding it:

set altitude and pull ALT — ...— ALT HOLD.

Formal analysis will show that there is a path through
the logic starting with the pilot pulling the altitude knob
that does not result in the ALT HOLD state (specifically,
this occurs when the automation is in the modes NOT
ARMED and ALT CAP and the pilot does something that
changes the pitch mode, in this case adjusting the ver-
tical speed wheel).

One way to fix the problem is to change the transition
logic to that shown in Figure 6. Note that although the
second column of the transition table from ANY to ALT
HOLD still does not require direct pilot input, the transi-
tion is not indirect by our definition because it satisfies
the pilot model of the transition logic above. The tran-
sition from ANY to ALT CAP is still indirect, but there is
no longer a path through the vertical control logic that
violates the expected cause and effect relation between
arming the capture and capturing the altitude when it is
acquired. We note that this solution may violate other
goals or desired behaviors of the autoflight system—the
designers would have to determine this when deciding
what solution to use. In addition, a more sophisticated
solution may be required, e.g., a hysteresis factor may
need to be added to the mode transition logic to avoid
too rapid or “ping-ponging” transitions between pitch
modes.

Finding indirect mode transitions does not mean the
software must be changed. The identified criteria are
simply clues for determining where to look for potential
problems. The designers may decide that no real prob-
lem exists and make no changes or they may decide not
to change the automation but instead to make changes
in the interface design or in pilot training.

In general, it is not feasible to make all mode transitions
direct in any sophisticated automated controller. The
goal instead is to simplify the required pilot model of
the automation behavior as much as possible. In this
case, the pilot expects a direct mode transition from set-
ting a target altitude and arming the altitude capture to
eventually attaining capturing altitude, changing to ALT
HOLD mode, canceling the ARM command. Any paths in
the automation logic that will violate this assumption
will be a source of potential mode confusion, even if the
mode change is annunciated. Of course, the pilot may
have more sophisticated knowledge of the automation
logic and know that adjusting the vertical speed wheel
will cancel the previously given altitude capture com-
mand. However, ,this knowledge assumes a much more

<TVOpW-—<AOmMmUVCwW

moOo>»mnxom-—a2Z-—

Pitch

| ALT

HOLD

VERT
SPD

IAS

ALT
CAP

SUPERVISORY
MODE Manual
Autothrottle Alt Hold Vert Spd Vertical Speed Altitude
CONTROLS AP Button S el e IAS Button ficel =p titu
lon = orr]| [[on = orr]| [[on = orr]| [[onE orr]| [[onE or] Q Q
Roll Pitch
VOR ALT
|| caP | | HOLD
| | VOR VERT
TRK '] sPD
HDG IAS
| SEL
L| ALT
CAP
OTHER INPUTS
AND OUTPUTS
(omitted for space reasons)
AUTOFLIGHT Autothrottle Autopilot Thrust Arm Roll
omRATNG [on] [on]
MODES |1 |1 CAP
Off Off
o] o] on
TRK
Capture
HDG
SEL
[1
AIRCRAFT - ‘d ‘ \ - \d_ \
OPERATING MODES Flight Climbing Descending Mok Unknown
AIRCRAET Slats Flaps Engine Controller
COMPONENT Retracted | up | OPERATING MODES
MODELS
Down
/ /
Unknown ‘ Unknown ‘

Engine Model

Figure 4: Part of the Graphical State Machine Model of the MD-88 Vertical Control Logic

PITCH Any VRT Any ALT
SPD HOLD
MODE OR
AP in-mode On |T||T|
APin-mode On Pitch in-mode Any T
Filot adjusts Pilot pushes HOLD || T|
ALT AND | V/SPD whesl AND A= =
HOLD - Alt acquired T
Pilot pushes 1
VERT V/SPD button InmodeALTCAP || || T]
| sPD
RESULT: RESULT:
IAS Change Pitch annunciator to VRT SPD Change Pitch annunciator to ALT HOLD
ALT
CAP
Any IAS Any ALT
CAP
AND APin-mode On % APin-mode On
; Difference between MCP target
Pilot pushesIAS || T AND | Fititude, current alt, vert vel o%ity
satisfies condition to start leveling off
Capture in-mode Armed
RESULT:
Change Pitch annunciator to IAS RESULT:
Autothrottle goesto CLAMP mode Start leveling off
Change Pitch annunciator to ALT CAP
CAPTURE ‘ Armed H Not Armed ‘ Not Armed H Armed ‘
MODE

]

OR
Pilot pushesALT .
AND Pitch in-mode
ALT CAP T

RESULT:
Change Arm annunciator to blank

OR
AND Pilot sets new higher alt .
Pilot pulls ALT B

RESULT:
Change Arm annunciator to ALT

Figure 5: Transition Logic for the Pitch and Capture Modes

Any ALT
HOLD
OR
AP in-mode On T|[T|
Pitch in-mode Any LTI
AND | PFilot pushesHOLD l |
Alt acquired L LT
Capturein-mode ARMED | | || T]
RESULT:

Change Pitch annunciator to ALT HOLD

’Armed H Not Armed ‘

OR
Pilot pushesALT .
AND Pitch in-mode
ALT HOLD T
RESULT:

Change Arm annunciator to blank

Figure 6: Revised Transition Logic for the Pitch and
Capture Modes

complex model of automation behavior on the part of
the pilot and makes the automation behavior more dif-
ficult to predict. The number of ASRS reports on this
error leads us to believe that this assumption is not re-
alistic.

Several caveats are important here. First, we are only
guessing at the MC-88 software logic on the basis of the
observed behavior. The real software specifications or
code would have to be examined to determine what logic
is actually implemented. Second, making the change we
have recommended may not be feasible (or correct) due
to other unmodeled parts of the logic that depend on the
ARMED mode: A real development project would have
the entire logic modeled and would be able to make the
appropriate tradeoffs and design decisions.

REFERENCES

[Deg96] Degani, A. Modeling Human-Machine Sys-
tems: On Modes, Error, and Patterns of In-
teraction. Ph. D. thesis, Georgia Institute of
Technology, 1996.

[Hans97] Hansman, John. Personal communication.

[HL96] Heimdahl, M. P. E. and N. Leveson. Com-
pleteness and consistency analysis of state-
based requirements. Transactions on Software

Engineering, June 1996.

[HLK95] Heitmeyer, C., Labaw, B., and Kiskis, D. Con-
sistency checking of SCR-style requirements
specifications. Int. Symposium on Require-
ments Engineering, York, 1995.

[JLHMO1] Jaffe, M.S, Leveson, N.G., Heimdahl,
M.P.E., and Melhart, B.E.. Software require-
ments analysis for real-time process-control

systems. IEEE Transactions on Software En-
gineering, SE-17(3):241-258, March 1991.

[Lev95] Leveson, N.G. Safeware: System Safety and
Computers. Addison-Wesley Publishing Co.,
1995.

[Lev97] Leveson, Nancy G. Mode Confusion Modeling
and Analysis, in preparation.

[LPS97] Leveson, N.G., Pinnell, L.D., Sandys, S.D.,
Koga, S., and Reese, J.D. Analyzing Software
Specifications for Mode Confusion Potential.
Proc. Workshop on Human Error and System
Development, Glascow, March 1997.

[Luc87] Lucas, D.A. Mental models and new technol-
ogy. New Technology and Human Error, John
Wiley & Sons, 1987, pp. 337-340.

[Lut92] Lutz, R.R. Analyzing software requirements
errors in safety-critical, embedded systems.
Software Requirements Conference, 1992.

[Lut93] Lutz, R.R. Targeting safety-related errors dur-
ing software requirements analysis. Proc. Sig-
soft '93: Foundations of Software Engineer-
ing, 1993.

[MLR97] Modugno, F., Leveson, N.G., Reese, J.D.,
Partridge, K., and Sandys, S.D. Integrated
Safety Analysis of Requirements Specifica-
tions. Requirements Engineering Journal, to
appear.

[Pal96] Palmer, E. “oops, it didn’t arm” — a case study
of two automation surprises. NASA Technical

Report, 1996.

[SW95] Sarter, N.D. and D. Woods “How in the world
did T ever get into that mode?”: Mode error
and awareness in supervisory control. Human
Factors 37, 5-19.

[SW95] Sarter, N. D. and D. Woods Strong, silent,
and out-of-the-loop. CSEL Report 95-TR-01,
Ohio State University, February 1995.

