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An Empirical Comparison of Software
Fault Tolerance and Fault Elimination

Timothy J. Shimeall and Nancy G. Leveson

Abstract— Reliability is an important concern in the development
of software for modern systems. The authors have performed a
study that compares two major approaches to the improvement of
software—software fault elimination and software faulit tolerance —by
examination of the fault detection {and tolerance where applicable) of five
techniques: run-time assertions, multiversion voting, functional testing
augmented by structural testing, code reading by stepwise abstraction,
and static data-flow analysis. The study focused on characterizing
the sets of faults detected by the techniques and om characterizing
the relationships between these sets of faults. Two categories of
questions were investigated: 1) comparisons between fault-elimination
and fauit-tolerance techniques and 2) comparisons among various testing
techniques. The results provide information useful for making decisions
about the allocation of project resources, point out strengths and
weaknesses of the techniques studied, and suggest directions for future
research.

Index Terms— Assertions, back-to-back testing, code reading, eval-
uation of software methodologies, fault elimination, fault tolerance,
N-version programming, software experiments, static analysis, testing.

I. INTRODUCTION

RELIABILITY is an important concern in the development of
software for modern systems. Software reliability improve-
ment techniques may be classified according to the approach
they use to deal with faults (source code defects): 1) fault
avoidance techniques attempt to prevent the introduction of
faults into software during development; 2) fault-elimination
techniques attempt to locate and remove faults from software
prior to its use; 3) fault-tolerance techniques attempt to prevent
the faults from causing a program to fail.

Because the resources available on any software development
project are necessarily limited, choices need to be made about
how many and how thoroughly any of the techniques are applied.
However, there is little comparative information available. The
few empirical studies that have done comparisons have largely
compared the techniques solely on the numbers of faults de-
tected by each technique, rather than examining the relationship
between the sets of faults detected. This experiment examines
the amount of intersection between the sets of faults detected
by various techniques in order to reveal limitations of these
techniques and suggest research directions to extend their utility.
The techniques compared are n-version programming and back-
to-back testing, run-time assertions, functional testing augmented
by structural testing, code reading by stepwise abstraction, and
static data-flow analysis.
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The next section surveys related work. Following that, the
experimental procedure used in our study is described, some
terminology is defined, the results are presented, and the impact
of these results in providing direction for future research is
summarized in the conclusions.

II. ReLaTED WORK

A. Fault-Elimination Experiments

There are a large number of studies examining software
testing. Much of the recent work has focused on assessing the
effectiveness of various testing techniques. Myers [25] did a
comparative study of functional testing against code reading
for fault detection in small Fortran programs. The code-reading
methodology used was an informal desk check conducted by
three participants. Myers found a wide variation between indi-
viduals, but no significant difference between the performance
of the two techniques.

A study by Hetzel [16] compared code reading, structural
testing, and functional testing in terms of the faults detected by
each technique. In that study, 39 experienced subjects tested three
PL/I programs ranging in length from 64 to 170 statements. The
study found that functional testing discovered the most faults and
code reading the least, with structural testing (using a statement-
coverage criterion) falling in between. Code reading detected
faults for which test cases are hard to derive, and it detected
initialization faults,

Basili and Selby [S5] compared code reading by stepwise
abstraction with functional testing (using equivalence partitioning
and boundary-value analysis) and structural testing (using a
Statement-coverage criterion) in four small programs (145 to
365 lines long) written in an Algol-like language. Three of the
programs contained naturally-occurring faults, while the fourth
contained a mixture of naturally-occurring and seeded faults. This
study reported that code reading by stepwise abstraction detected
more faults than either of the other techniques studied. Statement-
coverage testing detected fewer faults than functional testing. The
study also compared the types of faults detected by each method
using two classification schemes: omission versus commission
and the type of operation in which the fault was present (initial-
ization, control, data, computation, interface, or output). Code
reading and functional testing detected insignificantly different
numbers of each class of faults except interface faults, where
code reading detected significantly more, and control faults,
where functional testing detected significantly more. In each case,
the statement-coverage testing detected either significantly fewer
faults of each type or there was no significant difference in the
number of faults detected.

Girgis and Woodward [15] compared the fault-detection abil-
ities of four types of testing: weak-mutation testing, data-flow
testing, control-flow testing, and static data-flow analysis. The
comparison used a set of small Fortran programs (textbook exam-
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ples) that were seeded with faults one at a time by an automated
tool, then tested until either the seeded fault was detected or
the testing criteria were satisfied. The results indicate a large
variation in the effectiveness of the testing criteria. Analysis of
the experimental data shows an insignificant difference between
the four groups, due to the large variation between the criteria
in each group. The differences between the individual criteria
were significant. The most effective criterion was All-LCSAJ’s
(Linear Code Sequence and Jump). However, this study failed
to indicate if this effectiveness result was due to the choice of
faults seeded in the programs or to characteristics of the detection
techniques (e.g., the seeding strategy may have favored All-
LCSAJ’s). Moreover, the results may have been influenced by
the particular testing strategies of each type used.

Ramamoorthy and Ho [27] studied two forms of static data-
flow analysis on large Fortran programs. Their results confirmed
the limitations of static data-flow analysis, but faults were de-
tected during their experiment. In the 2000 line program analyzed
in that study, simple static data-flow analysis (analysis for
unreachable code, interface inconsistencies, and locally unini-
tialized variables) detected four faults. In a separate 23000
line program, a more comprehensive static data-flow analysis
(performing more thorough uninitialized-variable checking, loop-
increment checking and analysis for branch anomalies) detected
20 faults.

There have been proposals to use multiversion voting in the
testing process [6], [7], [26], [28]). In this method, known as
back-to-back testing, the vote itself is used as the test oracle,
and therefore a larger number of tests can be executed. A study
by Bishop et al. [6] examined back-to-back testing by varying
the specification language, development practices and imple-
mentation language used for the versions. Three professionally
developed versions were used and seven faults were detected by
back-to-back testing, after initial individual version testing using
a series of functional tests. Of the seven faults, two were common
between two of the three versions used. No independent method
of verification of the results was used so three-way failures could
not be detected.

B. Fault-Tolerance Experiments

There have been very few experiments that have explored
the use of assertions for fault tolerance. A study by Ander-
son [2] applied recovery blocks, which use assertions to test
the system state, to a real-time control system. The code (a
professionally-implemented version of a submarine-control pro-
gram) was 8000 lines long and organized into 14 concurrent
activities. The results showed that while assertions were quite
difficult to formulate, some reliability improvement was gained
through the use of recovery blocks.

Using software from a voting experiment [19], Leveson,
Cha, Knight, and Shimeall [22] had a set of 24 students insert
assertions into eight versions of a Pascal program (varying in
length from 400 to 800 lines) in order to detect errors. The results
were compared to error detection using 2-version and 3-version
voting. The assertions detected errors associated with as many
code faults as voting did (but not necessarily the same faults)
but were much more reliable in detecting errors—if assertions
ever detected the errors associated with a particular fault, they
always did whereas, for the most part, voting only detected errors
associated with particular faults part of the time.

There have been several experiments investigating the use of
n-version programming alone. The first, by Chen [11], provided

little information because of difficulties in executing the ex-
periment. The author also wrote 3 of the 7 programs himself.
However, it was noted that 10% of the test cases caused failures
for the 3-version systems (35 failures in 384 test cases). Chen
reported that there were several types of design faults that were
not well tolerated in this experiment, in particular missing-case
logic faults.

Avizienis and Kelly examined the use of multiple specification
languages in developing multiversion software [4]. The reported
data indicates that in over 20% of 100 test cases executed,
either there was no majority answer or the majority answer was
incorrect.

Another experiment, by Knight and Leveson, found that the
hypothesis of statistical independence of failures between inde-
pendently developed programs did not hold [19]. Furthermore,
for the 27 programs run on 1000 000 test cases, an error was not
detected by voting three versions in 35% of the cases where an
error actually occurred [20].

One of the problems with all of these studies is that most of
them have employed uncontrolled experimental designs. Claims
have been made about improvements in reliability due to these
techniques in comparison with relatively unverified software. It
is reasonable to expect that applying some reliability-enhancing
technique would produce an improvement over not applying any
special techniques. A more realistic comparison is to examine the
reliability of multiple versions voted together versus the reliabil-
ity of a single version with additional reliability-enhancement
techniques applied.

Although it was not the original goal, there is a study that
provides one data point in this comparison. Brunelle and Eckhardt
[10] took a portion of the SIFT operating system, which was
written from a formally verified design at SRI [24], and ran
it in a three-way voting scheme with two new (nonformally
verified) versions. The results showed that although no faults
were found in the original SRI version, there were instances
where the two unverified versions outvoted the correct, verified
version to produce a wrong answer.! Care must be taken in using
this data because the qualifications of the implementors of the
three versions may be different.

Examining the results obtained by the previous experiments re-
veals several characteristics of n-version programming. First, the
prevalence of coincident failures (observed in every experiment
conducted thus far) reduces the effectiveness of multiversion vot-
ing in dealing with faults. Second, there appears to be substantial
difficulty in getting versions to agree on a consensus result. Even
mathematically correct algorithms sometimes produce differing
results due to numeric instability [8].

III. EXPERIMENTAL DESIGN

A set of programs written from a single specification for a
combat simulation problem are used in the study described in this
paper. The specification is derived from an industrial specification
obtained from TRW [12]. The simulation is structured as three
sets of transformations from the input data to the output data.

The input data consists of 2600-4500 values (depending on
the size of the military units modeled) describing the simu-
lated military units, their capabilities, and the environment in
which they interact. The first set of transformations converts the
input data to an abstract intermediate state. The intermediate
state is updated by a second set of transformations in each

I These results are not reported in the published paper on the experiment,
but were obtained through personal communication with one of the authors.
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cycle of simulated time. This second set of transformations
is partitioned into six interacting groups, simulating military
positioning, movement, observation, attrition, recovery/repair,
communication and the terrain/weather effects present within
the simulated battlefield. At each cycle of the simulation, each
simulated military unit cycles through each of these activities,
acting on each other military unit and being acted upon by each
military unit. (The reader is encouraged to see the Dobieski paper
[12] for more details.)

After a number of cycles (specified in the input data), the out-
put data are produced by the third set of transformations from the
final intermediate state. The output data consist of 5-40 values
(depending on the size of the military units modeled). Prototype
implementations were developed by three individuals in order
to evaluate and improve the quality and comprehensibility of the
requirements specification before the development of the versions
began.

The experiment participants used throughout were upper-
division computer science students. One set of participants,
students in a senior-level class on advanced software engineering
methods, performed all design and implementation activities on
the program versions. A disjoint set of participants attempted
to detect faults in the programs. All decisions on whether
or not to report a section of code as a fault were made by
a student participant or by a program written by a student
participant. Once the reports were generated (by all techniques),
the administrator acted as final arbiter as to which reports
identified faults and which were false alarms; this decision was
not reported to the students during their participation in the
experiment. All participants were trained in the techniques used
in the experiment; however, none had applied these specific
techniques on any projects prior to this experiment with the
exception of previous Pascal programming experience by the
implementation participants.

The development activity involved 26 individuals, working
in two-person teams. Teams were assigned randomly. The de-
velopment activity involved preparing architectural and detailed
designs for the software, coding the software from those designs,
and debugging the software sufficiently to pass the version
acceptance test. Of the 13 teams, 8 produced versions that
passed the acceptance test within the time requirements of the
experiment. The version acceptance test was a set of 15 data sets.
The data sets were designed to execute each of the major portions
of the code at least once. The acceptance test was not, and was
not intended to be, a basis for quality assessment of the code,
but rather was a test of whether all major portions of the code
were present in some operable form. The goal of the development
procedure was to have the versions in a state similar to that of
normal software development immediately prior to unit testing.

Table I describes the finished versions. The column marked
“Modules” shows the number of Pascal procedures and functions
in each version. The size of the source code is given by two
figures, source lines and executable lines, with the latter figure
omitting blank and comment lines. The mean code length is
1777 lines, with a standard deviation of 435.

The experimental activity involved applying five different fault
detection techniques to the program versions: code reading by
stepwise abstraction, static data-flow analysis, run-time assertions
inserted by the development participants, multiversion voting,
and functional testing with follow-on structural testing. The
code reading was performed by eight individuals, following the
technique described by Linger, Mills, and Witt [23]. Each version
was read by one person, and each person read only one version.

TABLE 1
'VERSION SOURCE PROFILE

Version

Total Executable
# Modules Source Lines Code Lines
1 72 7503 2414
2 56 3452 1540
3 41 1480 1201
4 57 3663 2003
5 28 1834 1544
6 72 3065 2206
7 75 2734 1978
8 57 1896 1331

Prior to code reading, all developer comments were stripped from
the version source code. This was done to eliminate the inherent
inequality of information based on the widely varying amounts
of comments in the version source code and to avoid biasing the
code readers through the comments in the code.

The data-flow analysis was performed by implementing and
executing an analysis tool based on algorithms by Fosdick and
Osterweil [13].

The development participants were trained in writing run-
time assertions, given a textbook chapter [3] as a reference and
required to include assertions in their versions. The run-time
assertions were present during the application of all techniques.
If an assertion condition fails, a message is generated.

A “gold” version has been written by the experiment adminis-
trator as an aid for fault diagnosis, but this actually just provides
another version to check against. In fact, faults in the gold version
have been detected. The gold version is not included in the
experimental data. It is, of course, possible that failures common
to all of the versions, including the gold, will not be detected.
This is an unavoidable consequence of this type of experiment.

Functional testing augmented by structural testing was per-
formed on the programs. A series of 97 functional test-data sets
were generated from the specification by trained undergradu-
ates. These data sets were planned using the abstract function
technique described by Howden [17]. Part of each plan was a
description of the program instrumentation needed to view the
output of each abstract function. The structural coverage of the
functional data-sets was measured using the ASSET structural
testing tool [14], and sufficient additional data sets were defined
to bring the coverage up to the all-predicate-uses level. This
coverage was selected to provide a thorough level of testing
within the time constraints of the experiment. The participants
used a total of 60 additional data sets to achieve all-predicate-
uses coverage in all versions. The number of data sets executed
by each individual version varied from 5 to 13, as needed to
achieve the required coverage.

Because some of the techniques applied to the programs are
open-ended in terms of possible application of resources, it was
necessary to attempt to hold relatively constant the resources
allocated to each technique. This was not necessary for those
techniques, namely static data-flow analysis and code reading,
that have a fixed and relatively low cost. Table II contains the
amount of human hours and computer hours devoted to each
technique. The time devoted to software testing and voting is
approximately two calendar months per version for both where
we assumed that the computer could execute for 24 hours a day
and 7 days a week while humans worked 40 hours per week.

Furthermore, we assumed that many more test cases can be



176 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 2, FEBRUARY 1991

TABLE II
Hours DEVOTED TO EACH TECHNIQUE PER VERSION

Computer Hours

Human Hours

Technique Mean SD Min. Max Mean SD Min. Max.
Code Reading 0 0 0 0 36 15 19 60
Static Analysis 40 30 0.5 104 1 0.1 0.75 1.25
Software Test 84 63 36 219 373 4 366 378
Voting 1415 1055 600 3692 6 1 4 8

executed when using back-to-back testing with random genera-
tion of test cases because of the lack of necessity to apply an
independent validation procedure to the outputs although there is
also a necessity to write a test-harness program to implement the
voting. Writing a test harness is not necessarily a trivial problem
when real numbers are involved since different correct results
are possible using different (correct) algorithms due to the use of
limited-precision arithmetic. Using a tolerance in the comparisons
will not solve the problem [8]. In previous experiments, this
consistent comparison problem has resulted in time-consuming
debugging of correct programs.

IV. DEFINITION OF TERMS

Before presenting the results, certain key concepts need to be
clearly defined. In particular, it is important to understand what
a fault is and when it may be detected by each technique. The
IEEE standard defines a fault to be “an accidental condition that
causes a functional unit to fail to perform its required function.”
[1] A failure is an output value that varies from the specified
standard due to a fault.

If the correction of a section of code eliminates at least
one failure, it is counted as a single fault. Several faults could
contribute to the failure for a given data set, and several failures
could be due to a single fault. For example, a single data set
could reveal separate faults dealing with battalion location and
observation of one battalion by another. If either of these faults
were solely responsible for failures in other data sets, they are
counted as separate faults. If correction of either of these faults
eliminates the failure, they are counted as a single fault. This
is because faults may sometimes be due to actions distributed
throughout the version code. For example, if a failure results
from the initialization code not ensuring an assumption made in
some calculation code, this is counted as only one fault, although
it could be corrected either by changing the initialization code
to ensure the assumption or by changing the calculation code to
obviate the assumption.

For most of the techniques used in this experiment, determi-
nation of when the techniques detect faults is straightforward.
Static analysis and code reading identify the fault precisely to a
section of code. The other techniques detect errors, which in this
experiment were specific enough to allow relatively straightfor-
ward tracing to a fault causing that error. For simplicity, we
describe these techniques as “detecting faults,” when in fact
they detected errors that were later traced to faults. A run-time
assertion generates reports when faults produce an erroneous run-
time state. Testing detects a fault when the test-failure conditions
are satisfied due to behavior caused by a fault. The test-failure
conditions are explicitly given in the functional test plans and are
developed as part of the test data during the structural testing.
Faults detected during analysis of the version source code to

formulate the structural test data are also considered detected by
structural testing.

When considering fault tolerance using multiple-version vot-
ing, it is clear that if a correct answer is produced despite the
failure of one of the programs, then the triplet is fault tolerant
and the single error is masked. If no agreement is reached, then
one could say that the individual program failures were detected,
but fault tolerance (run-time masking) has not been achieved. In
the third case, i.e., producing an incorrect result, the failure is not
detected and the faults have not been tolerated. For back-to-back
testing, the conditions when a fault is detected are less clear. We
define a fault as detected if the version containing it is identified
as having failed because its answer differs from a majority of the
versions. As a consequence of this definition, two-version voting
detects faults whenever the results of the pair disagree. All faults
detected by three-version voting are also (by definition) detected
by two-version voting, but the converse is not true.

V. REesuLrs

Two general categories of questions have guided our analysis
of the data. The first is a comparison between fault-elimination
and fault-tolerance techniques. The second category of questions
involves comparing various testing techniques with respect to
fault detection, including consideration of their relative strengths
and weaknesses and how these techniques might be improved.

A. Fault Tolerance and Fault Elimination

To examine whether fault-tolerance techniques are substitutes
for fault-elimination techniques, we shall consider the faults
tolerated by three-version voting and potentially tolerated by
techniques using assertions. Note that the assertions themselves
provide no fault recovery ability, but may be used in con-
junction with either forward or backward recovery strategies
to tolerate faults once they are detected. No recovery strategies
were implemented in the programs used in this experiment. This
means that the results relating to assertions should be viewed as
counts of faults potentially tolerated (if the hypothetical recovery
techniques were effective) rather than faults actually tolerated.
This contrasts with fault tolerance by voting, where the same
mechanism (a vote) is used to detect and tolerate faults. The
results in this section relating to voting are counts of faults
actually tolerated by three-version voting (i.e., where a majority
produced a correct result) in this experiment.

The first question that was investigated is whether run-time
voting tolerated the faults detected by the fault-elimination tech-
niques used. It has been suggested by Avizienis and Kelly [4] that
multiversion voting may reduce or replace traditional software
V&V.
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TABLE III
NUMBER OF FAULTS TOLERATED OR DETECTED
Version
1 2 3 4 5 6 7 8 Total
Tolerated by vote 7 7 11 8 14 7 5 8 67
Detected by assertions only 4 3 1 8 2 2 4 4 28
Detected by fault elim. only ' 4 17 27 13 15 4 13 26 119
Assert and fault elim. 7 1 1 3 6 3 0 0 21
Assert and vote 0 0 2 0 1 0 2 3 8
Vote and fault elim. 0 2 3 3 2 4 5 2 21
Assert, vote and fault elim. 0 0 1 1 2 1 0 1 6

“By combining software versions that have not been sub-
jected to V&V testing to produce highly reliable multi-
version software, we may be able to decrease cost while
increasing reliability. Most errors in the software versions
will be detected by the decision algorithm during on-line
production use of the system. The software faults then can
be fixed without affecting system availability” [4].

In order to offset the extra cost involved in producing multiple
versions, at least one commercial avionics software manufacturer
has asked for a reduction in the testing required by the FAA,
arguing that the use of multiversion programming will decrease
the need for unit testing [21]. In general, using any reliability-
enhancing technique has some cost involved with it, and tradeoffs
must always be made between using different techniques or
combinations of techniques based on cost-benefit analysis.

If voting tolerates the faults detected by testing, then elim-
ination or reduction in testing can possibly be justified, and
testing could be completed while the software is being used.
However, if the faults detected by fault elimination are not
tolerated by voting at run-time, then testing cannot be eliminated.
Furthermore, any argument for reduction of testing would need
to prove that the reduction in testing merely results in the
nondetection (and nonelimination) of the faults that voting will
reliably tolerate during execution and does not result in run-
time failures caused by faults that might have been detected and
eliminated by increased testing.

There are two aspects to answering this question. The first
is whether the same faults are both detected by the combined
fault-elimination techniques and tolerated by voting. A second is
whether one particular type of testing is superfluous when using
voting because it detects the same faults that voting tolerates.

The programs were executed on 10000 randomly-generated
data sets. In general, we found that the faults that were tolerated
were not the same as the faults that were detected by fault-
elimination techniques, and the faults that were tolerated were not
tolerated with high reliability. Table III shows the number and
intersection of faults found by each class of technique. Twenty-
seven faults, given by the sum of the last two lines of Table III,
were both tolerated by voting and detected by a fault-elimination
technique.

The tolerance of faults by voting is not as consistent as implied
by the data in Table III. In reality, two very different things are
being compared. Fault-elimination techniques are used to detect
faults which are then (hopefully) eliminated before the production
use of the software. On the other hand, fault-tolerance techniques
may tolerate the errors caused by faults, but the faults remain in
the code. Tolerating an error once that is caused by a fault does
not necessarily mean that all errors caused by that fault will be
tolerated. In the table, run-time voting is credited with tolerating

a fault if it tolerates at least one failure caused by that fault even
though it may not tolerate every failure caused by the fault. It is
also credited with tolerating a fault if only one or several of the
56 combinations of versions tolerate it even though all of them
do not. In general, we found that even when the failure caused by
a fault is at times tolerated by a triplet, it is usually not tolerated
every time, and there is wide variation among the different triplets
in terms of how effective they were in tolerating faults.

Of the 56 total voting triplets, the average individual triplet
tolerated 33 faults of the 104 faults present in the average indi-
vidual triplet. The best triplet tolerated 41 faults out of the 107
detected by all techniques in the versions (numbers 4, 5, and 6)
that participated in that triplet while the worst tolerated 27 faults
out of the 107 detected by all techniques in the participating
versions (numbers 1, 5, and 6).

In order to show the variation, we computed the number of
faults tolerated at least once by a triplet divided by the total
number of faults that caused a failure in one of the versions
comprising that triplet. This fraction ranged from 60.4% to 88.6%
with an average of 75.9% and a standard deviation of 6.2%.
Note that these are percentages of the faults present in the three
versions that constitute the voting triplet and not percentages of
all faults found in all versions.

Another way of looking at variability among triplets is to
consider the conditional probability that a triplet will mask a
failure given that a failure occurs (i.e., the conditional probability
that a correct result is produced despite the failure of one of the
versions). This fraction ranged from 20.8% to 61.5% with a mean
of 37.9% and a standard deviation of 11.1%. On average the
triplets only tolerated faults 38% of the time that they caused a
failure.? This can be explained by the large number of correlated
failures that occurred.

The other side of the above question is whether there were
any faults tolerated by run-time voting that were not detected by
the fault-elimination techniques. If so, then the use of fault elim-
ination does not preclude the use of fault tolerance, i.e., they are
complementary techniques rather than competitive techniques.
Again, Table III shows that this did occur for 67 faults, although
again it must be remembered that the errors caused by these faults
were not tolerated very reliably. Firm conclusions cannot be
drawn from this data given the novice nature of the participants in
the fault-elimination efforts, but it does raise interesting questions
for further study.

An important related question involves the relationship be-
tween coincident failures and testing. There has been speculation
about whether the faults that result in coincident failures (and
thus reduce the fault-tolerance capability of voting systems) are

2 Another way of saying this is that, on average, the triplets only tolerated
38% of the failures that occurred.
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TABLE IV
NUMBER OF FAULTS DETECTED
Version
1 2 3 4 5 6 7 8 Total

Faults detected only by:
Testing 2 12 21 1 13 1 11 10 81

-Versi i 10 9 11 7 1 7 5 10 73
2-Version voting i 3 L u T i 2 0 7
Code reading 0 2 4 2 0 1 0 16 25
Assertions 3 3 1 8 1 1 3 3 23
Static analysis 0 0 2 0 0 0 0 0 2
Faults detected by both
(but no others):
2-v. voting and test 3 1 1 3 2 6 4 0 20
assertions and test 5 1 0 2 5 3 0 0 16
assertions and 2-v. voting 0 0 2 0 2 0 4 4 12
reading and assertions 2 0 0 1 1 0 0 0 4
static analysis and 2-v. voting 0 0 0 0 0 1 1 0 2
reading and 2-v. voting 0 0 2 0 0 0 0 0 2
reading and test 0 0 0 0 0 0 1 0 1
static analysis & test 0 0 0 0 0 0 1 0 1
Faults detected by all three of
(but no others):
Assert and 2-v. voting and test 0 0 1 1 2 1 0 0 5
Reading and 2-v. voting and test 0 2 0 0 0 0 0 2 4

likely to be detected through testing procedures. Examination of
the specific faults that were detected by testing indicates that
testing detected only 24 of the 103 coincident-failure faults.
Furthermore, the coincident-failure faults found by testing did not
include those faults that produced the majority of the coincident
failures during execution.

B. Comparison of Fault-Detection Techniques

Some comparison of the fault-detection techniques is possible
with this data, although absolute numbers may not be important
because of the problems of evaluating and keeping constant the
amount of effort put into each technique. Furthermore, numbers
are not really the issue; instead a more important question may be
whether different or similar faults are found by each technique.
A technique may only find one fault, but if that fault is not likely
to be found in any other way, then that technique may still need
to be applied.

The reader should note that we are now reinterpreting our
experimental procedures. In the previous section, we identified
the execution of the 10000 input cases as a simulation of the
production use of the software. We are now interpreting this
procedure as a fault-elimination technique that would precede the
actual production use of the programs. There is no problem with
this from an experimental design standpoint since the procedures
are identical and differ only in the time they are performed.

1) Fault Detection Summary: Table IV shows the number of
faults detected by each technique. Note that the figures in
Tables III and IV are not comparable due to the difference
between fault detection by voting and fault tolerance by voting
and the difference between two-version and three-version voting.
The first five lines in Table IV give the number of faults detected
by each technique that were detected by none of the other
techniques (e.g., run-time assertions detected a total of 23 faults
that were not detected by voting, testing, static analysis, or code
reading). The remainder of the table gives the number of faults
detected in common by the techniques named on each line (e.g.,

code reading found a total of four faults that were also found by
run-time assertions, but were not found by any other technique).

The voting technique used in constructing Table IV was
two-version voting. Three-version voting detected 112 of the
123 faults found by two-version voting. These faults were found
by voting with the eight versions combined into the 28 possible
pairs and the 56 possible triplets. The values in the line marked
“2_Version voting” in Table IV are the maximum and minimum
of the faults detected by each two-version voting pair for each
version. A range exists for voting because it was applied to each
version seven times (the number of two-version voting systems
in which each version participated) while the other techniques
were applied only once. In all other voting cases (voting in
combination with each of the other techniques), there were no
variations in the number of faults detected. The interesting feature
of Table IV is not the precise values shown (which depend on
the application), but that most of the faults detected by each
technique were found by no other technique.

2) Variation in Voting Performance: To give some feeling
about the variability of the voting performance, two sets of
statistics are provided. The first set is the number of faults
detected at least once by each pair and each triplet, divided by
the total number of faults that caused at least one failure in the
versions making up the system (i.., the fraction of revealed faults
that each voting system detected). For the 28 two-version voting
systems, the fraction of faults detected varies from 91.3% to
100% with a mean of 97.9% and a standard deviation of 2.6%.
For the 56 three-version voting systems, the fraction of faults
detected varies among the triplets from 90.5% to 100% with
a mean of 96.5% and a standard deviation of 2.5%. In short,
the majority of pairs and triplets fail to detect at least some of
the faults revealed by the input data. Since virtually all systems
would be developed with at most one pair or triplet (not the 28
and 56, respectively, that we had), the data in Table IV represents
a best case for voting.

The second set of statistics used to analyze the variation in
fault detection is the conditional probability that a pair or triplet
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TABLE V
FauLr TAxoNoMY

Class Comments Detecting Technique
Overrestriction e.g., forcing all weather to move northeast, rejecting legal input Assert, Read, Test, Vote
Loop Condition e.g., infinite loop Vote, Assert, Test
Calculation Incorrect formula Read
Initialization Variable not initialized Stat. Analysis, Test
Substitution Wrong variable used Vote, Assert
Missing Check Exceptional case not handled e.g., divide by zero Read
Branch Condition Bad condition on a branch Vote, Read, Test
Missing Branch Localized missing code to detect and handle specific conditions in Read, Test

normal execution
Missing Thread Missing path throughout program Vote, Test
Unimplemented Requirement Missing functionality on all paths Test
Ordering Operations in wrong order (e.g., updating value before use) Vote, Test
Parameter Reversal Actual parameter order permuted with respect to formal parameter Vote, Assert

Data Structure e.g., linked list becomes circular

Vote, Test, Read, Assert

detects each fault given that it is revealed. The mean of these
probabilities over all faults detected for each two-version system
varies between 0.826 and 0.981, with a mean of 0.934 and a
standard deviation of 0.040. In other words, voting with a two-
version system never detected all of the failures of the component
versions. For the three-version voting systems, the mean of the
conditional probabilities over all faults detected by each system
varied from 0.787 to 0.953 with a mean of 0.886.

3) Back-to-Back Testing: There are two particularly interest-
ing comparisons to make that deal with currently unresolved
issues in testing research. The first is the use of back-to-back
testing versus the use of other testing oracles (i.c., those not
involving a voting procedure). Back-to-back testing allows a
large amount of data to be executed due to the automated nature
of the oracle, and it has been advocated as a way of extensively
testing complex software where determining a correct answer
by a nonvoting procedure may be tedious and time-consuming
[6], [7], [26], [28]. Of course, if one takes a large perspective,
part or all of the savings in testing may be offset by the cost
of producing and debugging multiple versions of the software.
However, if back-to-back testing is much more effective then the
cost arguments may be irrelevant.

The underlying assumptions in back-to-back testing are that
1) given that a fault leads to an erroneous output it will be
detected by the voting process, and 2) the faults that would
have been detected by other testing techniques, such as structural
testing or static analysis techniques, will be elicited and detected
by voting on random or functional test cases alone. Both of these
assumptions can be checked with our data.

There were 78 faults that were detected by the voting pro-
cedure that were not detected by any other technique. Even
given the novice nature of the participants in the other testing
procedures, they found 153 faults that were not detected by the
back-to-back testing. Forty-five faults were detected in common.
There were faults that did not cause failures on the randomly
generated test data and therefore could not possibly have been
detected by the back-to-back testing, but were found by the
techniques that do not require failure to detect faults.

A related question is whether better results are obtained by
doing the back-to-back testing on both randomly generated test
cases and functionally generated test cases. This separates the
issue of test data generation from the issue of using voting as
a test oracle. We executed the 56 triplets on the functionally
generated and structurally generated test cases and did not
detect any additional faults. This implies that the problem is

not necessarily in the test case generation method, but in the
identification of errors by voting, i.e., by the limitations of using
voting as a test oracle.

4) Types of Faults Detected: To examine the fault detection
behavior of the techniques further, the types of faults detected
by each were profiled and compared. Because there is no widely
accepted, detailed taxonomy for fault classification, a 13-class
fault taxonomy was developed and used. This taxonomy was
developed by studying the faults detected and then abstracting
the common features of the faults detected by specific techniques.
As a result, the taxonomy must be considered to be relatively
arbitrary.

The fault taxonomy is described in Table V. Since the taxon-
omy was developed to differentiate between the sets of actual
faults detected by the various techniques, significance tests on
these classifications are inappropriate. In the following discus-
sion, a statement that a technique detected faults in a particular
class does not imply that the technique detected all faults of that
class. For example, the statement that voting detected missing-
thread faults should not be interpreted as indicating that all
missing-thread faults located in the versions were detected by
voting, Two of the categories in this fault taxonomy (overrestric-
tion faults and data-structure faults) are not mentioned in the
text that follows since these categories do not provide a basis
for characterizing the differences observed in fault detection by
the various techniques.

Code Reading by Stepwise Abstraction: Code reading by
stepwise abstraction found calculation faults, missing-check
faults, branch-condition faults, and missing-branch faults. The
participants did not find large global pieces of missing code or
missing threads of logic that ran through the entire program.

Analysis of the experiment data lent insight into two questions
related to the use of code reading in software development. The
first of these questions is what conditions led code reading to
fail to detect faults. One reason for the failure of code reading to
detect certain faults was the omission of needed detail in the
abstractions constructed by the participants. A condition that
seemed difficult to detect was missing code. The code-reading
participants detected missing-branch faults (i.e., where the set of
cases handled by the code did not cover all possible cases at a
specific point), but failed to detect those cases where larger or
more widespread code was omitted.

A second question of interest in examining the code-reading
results is what conditions led the code-reading participants to
erroneously report code as faulty. Analysis of the annotations
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written by the code readers indicates that false alarms arose from
code that was difficult to abstract. For example, an erroneous
fault report was generated for a procedure with a large number
of arguments that was called in several places in the code. Some
of the formal parameters were used in different ways in the
procedure (depending on the value of other formal parameters),
and this led to misconceptions on the part of the reader. False
alarms also occurred when abandoned implementation strategies
(blind alleys during development) are reflected in the code. For
example, the readers erroneously reported several faults in cases
where the name of a variable conflicts with the manner in which
the variable is used. Annotations by the code readers in such
situations indicate that they focused on syntactic factors rather
than the program semantics. These results suggest that experience
and improved training may help reduce erroneous reports from
code reading.

Use of commented code for the code reading might have
prevented some of the false alarms of the readers. However,
it might also have led to different types of misdirection. For
example, it is equally possible that the readers would report
code as erroneous when it conflicted with the comments (e.g.,
where the development participants corrected the code, but not
the comments describing the code). Another possibility is that
the readers would have failed to detect as many faults, e.g., if
they summarized the comments instead of the code and thus
duplicated the faulty assumptions made by the development
participants.

Static Data-Flow Analysis: Static data-flow analysis found
only initialization faults. Two faults were found by this technique
that were not detected by any other. Upon examination, it was
determined that the compiler and operating system versions being
used happened to initialize to zero the particular storage locations
where the programs were loaded, and these variables were used
for counters and needed to be initialized to zero. Obviously, this
cannot be counted on in future versions of these support programs
so these are real and important faults to detect.

Voting: Voting found missing-thread faults, parameter-
reversal faults, substitution faults, ordering faults and faults
(subsets of loop-condition and data-structure faults) causing
abends (which, despite their cause, are obviously found by any
of the techniques that involve executing the code over a large
number of test cases).

It is interesting to consider the faults that were not found
by voting, i.e., those that were so highly correlated that the
faults were masked by the voting procedure. For the most part,
these were missing-branch faults. This is consistent with past
experiments, which have all reported that missing-logic errors
are pootly tolerated by multiversion systems. Testing strategies,
such as functional and structural testing, that examine special
cases as well as typical cases were more successful at finding
missing-branch faults. As discussed above, performing back-
to-back testing on the test cases derived for functional testing
did not solve the problem since the common faults masked the
identification of the fault even though the programs failed.

Another unmasked fault involved the use of a wrong subscript.
This is puzzling as the same thing happened in a previous
experiment [9]. We cannot currently find any other explanation
aside from coincidence.

Run-Time Assertions: Run-time assertions found parameter-
reversal faults, substitution faults and faults causing abends. They
did not detect any of the four classes of missing-code faults.
We are not very confident about the data for run-time assertions
as the programmers involved did not have any experience in

writing exception or error-detection code, and our subjective
evaluation of their assertions is that they were, in general, quite
poor. All of the run-time assertions used were simple range
or specific value tests (e.g., run-time assertions to check if the
variable Params . NumWeatherEvents lies between 0 and the
constant MaxWeather, or if pointers are non-nil); consistency
of internal results were not checked. In fact, examination of the
design documents show cases where the development participants
anticipated faults that actually occurred in their code, but (for
reasons known only to them) they omitted assertions to check
for these faults.

Despite these weaknesses, the simple range checks detected
23 faults that were found in no other manner. The fact that
assertions detected faults that voting did not is consistent with
the results of our previous study of assertion effectiveness [22].
It appears that even a cursory set of assertions has some value,
and this suggests that it would be useful to perform further work
to examine the effectiveness of a thorough set of assertions for
fault detection.

Functional and Structural Testing: Functional and struc-
tural testing identified ordering faults, missing-branch faults,
unimplemented-requirement faults, and missing-thread faults.
They also detected faults causing abends (as did all the tech-
niques that involved executing the programs). Structural testing
detected further missing-code faults, in particular faults involving
variables that were initialized in a manner that in rare cases
conflicted with the manner in which those variables were used.

Structural testing failed to detect several missing-thread faults
that were found by other techniques (such as voting). The incom-
pleteness seemed largely due to the module-by-module nature of
the testing tool used. That is, the prototype version of ASSET
used in this experiment measures the coverage achieved by the
input data on each module individually, with no consideration
of data flow between modules. The versions contain several
instances where global data structures are initialized in one
module, updated in a second module and used in calculations
in several other modules. While all of the initialization paths
and all of the update paths are covered by the test data, not
all of the update paths are covered for each initialization path.
Therefore, several of the missing-code faults eluded detection in
our structural testing.

Examination of the functionally-specified test data sets showed
that faults were revealed only by those data sets that contained
atypical data (i.e., those tests that exercised special cases in the
versions or odd combinations of the functions supported by the
code). This result supports a recommended practice in the field
of software testing.

5) Additional Comparisons of Fault Detection Techniques:
Two general attributes accounted for much of the observed
variation of effectiveness: the ability of the techniques to examine
internal states and the scope of their evaluation.

One reason voting failed to detect some faults was that it was
not able to examine internal program states. The other techniques
do not share this limitation. For code reading and static analysis,
examination of the internal state involves evaluation of the
program source code. Functional testing identifies and evaluates
internal abstract functions. Assertions evaluate specific internal
conditions at the locations where they are inserted. Because the
voting systems examine only final states, they fail to identify
faults that occur, but are concealed by later processing.

Tso and others argue that voting may be performed on internal
program states, as in the cross-check analysis technique [29].
However, the programs in this experiment are quite diverse. The
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internal program states differ significantly in the algorithms and
data structures employed. A single value in the internal state of
one program may indeed be a single value in another program,
but more often it is either a function of several values or not
present at all (unneeded in the alternate algorithm used in the
second program). Furthermore, since the order of the programs’
operations are also quite diverse, there is no single time except
initialization and production of the final result at which any
correspondence in values could be compared by voting. To
allow voting on internal program states requires specification
of the algorithm and data structures used in the internal states,
effectively eliminating any significant design diversity and thus
eliminating the ability to detect design errors.

A second important attribute is the scope of evaluation. The
scope over which assertions and code reading examine the system
state appears to be the key characteristic limiting the detection of
faults by those techniques. Assertions examine the system state
at specific points in the execution. If a fault has not yet occurred
at those points, or if the fault’s effect is masked, the assertion
does not detect the fault. The use of code reading by stepwise
abstraction on the uncommented form of these programs did not
detect certain faults because the process of abstraction did not
maintain sufficient detail. For example, an assumption by the
coder might be violated by the faulty code, but the assumption is
not preserved through several layers of abstractions made by the
reader between the initialization and the calculation code. The
purpose of abstraction is to keep the amount of information at
a manageable level, but over-abstraction limits the effectiveness
of code reading.

VI. CoNcLusIONs

It is important to consider several caveats when drawing
conclusions from the data presented in this paper. First, experts
in the various techniques were not used. Students get a lot of
experience in programming while in school, but they seldom
receive adequate exposure to and practice with testing and
other fault-elimination techniques. We gave them training, but
that is not a substitute for experience. Furthermore, only one
method was applied within each category of fault-elimination
techniques; the particular method chosen may not have been the
most effective. Finally, our program may not be representative
of a large number of applications and the particular software
development procedures also may not be representative.

Despite these limitations (which unfortunately are inherent in
this type of experimentation), useful information can be derived
from this study. In the few instances where there is other
experimental evidence, our results tend to support and confirm
previous findings. Where almost no experimental evidence is
available, our results represent one data point that can be used
to focus and direct future experiments.

This experiment is the first to investigate the relationship be-
tween fault-elimination techniques and software fault tolerance.
We found that our data does not support the hypotheses that
multiversion voting is a substitute for functional testing, that
testing can be reduced when using this software fault-tolerance
technique, nor that testing can proceed in conjunction with
operational use of the software in an n-version programming
system where high reliability is required. Instead, we found
that multiversion voting did not tolerate most of the faults
detected by the fault-elimination techniques and was unreliable in
tolerating the faults it was capable of tolerating. Although we also
found that multiversion voting tolerated different faults than were

detected by the fault-elimination techniques, no firm conclusions
should be drawn from this because of doubts about the ability of
the novices involved and the limitations of the fault-elimination
techniques used; further investigation is suggested.

The testing in this experiment largely failed to detect the faults
responsible for coincident failures of multiple versions. This
result occurred despite the fact that some of the testing techniques
target the testing of special cases, which are often involved in
coincident failures. This result may indicate that the faults that
reduce the effectiveness of n-version programming are among
the most difficult to detect. This is not surprising and satisfies
the intuitive explanation that the parts of the problem that lead
to mistakes by the programmers may be equally difficult for the
testers to handle. The whole field of psychology is predicated on
the assumption that human behavior (including that involved in
making mistakes) is not random.

The experiment also examined a broad set of fault detection
techniques in a comparative manner. While the presence of
multiple versions can speed the execution of large numbers
of randomly generated cases, our results cast doubt on the
effectiveness of using voting as a test oracle. Testing procedures
that allow instrumenting the code to examine internal states
were much more effective. When comparing fault-elimination
methods, we found that the intersection of the sets of faults found
by each method was relatively small. Examination of the faults
allowed us to categorize the types found by each method and, in
some cases, to explain why these results occurred.

This experiment raises questions with respect to several of the
techniques examined. The detection capability of code reading
appears to be reduced in comparison to earlier results such
as those reported by Basili and Selby [5] (who used smaller
programs). Additional research is needed to distinguish the
effects of program size and complexity on the effectiveness of
code reading. Analysis of the faults not detected shows that there
is a need to develop extensions to code reading techniques that
better characterize global effects. One way of accomplishing this
might be to mix a top-down code reading technique with the
bottom-up methodology of code reading by stepwise abstraction.
Further investigation of this seems worthwhile.

The static data-flow analysis technique used in this study is
limited in the type of faults it can potentially detect. However,
several of the faults found by this technique were found by
no other technique, and so applying it in software development
may be worthwhile, particularly given its relatively low cost of
application. There may also be language or environmental factors
that reduced the number of undefined reference faults in this
particular software. For example, the requirement for declaring
all variables in Pascal may serve as a reminder to initialize
variables before use. Other static-analysis techniques, such as
associating physical units with variable values and analyzing
the software to see if the units are appropriately preserved [18]
deserve further exploration. These types of techniques would
permit examination of the legality of usage rather than just the
presence of initialization and reference.
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