Demonstration of a Safety Analysis on a
Complex System*

N. Leveson, L. Alfaro, C. Alvarado, M. Brown,
E.B. Hunt, M. Jaffe, S. Joslyn, D. Pinnel,
J. Reese, J. Samarziya, S. Sandys, A. Shaw, 7. Zabinsky

University of Washington
Seattle, WA 98195

For the past 17 years, Professor Leveson and her graduate students have been
developing a theoretical foundation for safety in complex systems and building a
methodology upon that foundation. The methodology (as described in her book
Safeware [2]) includes special management structures and procedures, system hazard
analyses, software hazard analysis, requirements modeling and analysis for complete-
ness and safety, special software design techniques including the design of human-
machine interaction, verification, operational feedback, and change analysis.

The Safeware methodology is based on system safety techniques that are extended
to deal with software and human error. Automation is used to enhance our ability to
cope with complex systems. Identification, classification, and evaluation of hazards is
done using modeling and analysis. To be effective, the models and analysis tools must
consider the hardware, software, and human components in these systems. They also
need to include a variety of analysis techniques and orthogonal approaches: There
exists no single safety analysis or evaluation technique that can handle all aspects
of complex systems. Applying only one or two may make us feel satisfied, but will
produce limited results.

We report here on a demonstration, performed as part of a contract with NASA
Langley Research Center, of the Safeware methodology on the Center-TRACON Au-
tomation System (CTAS) portion of the air traffic control (ATC) system and pro-
cedures currently employed at the Dallas/Fort Worth (DFW) TRACON (Terminal
Radar Approach CONtrol). CTAS is an automated system to assist controllers in
handling arrival traffic in the DF'W area.

Safety is a system property, not a component property, so our safety analysis
considers the entire system and not simply the automated components. Because safety
analysis of a complex system is an interdisciplinary effort, our team included system
engineers, software engineers, human factors experts, and cognitive psychologists.

*This work was partially supported by grants from NASA Langley and NASA Ames.

SYSTEMS
ANALYSIS

Operations
Research
Modeling and
Analysis

Other types of
Systems Analysis

SAFETY PROGRAM

Write Safety Program Plan

Identify system goals

PHA

Hazard List

Fault Tree Analysis

Write requirements
and constraints

. Safety Requirements and
Constraints

SHA and SSHA

Generate alternative
system designs

Completeness/Consistency
Analysis

Simulation and Animation

Operator Task Analysis

Evaluate designs
and identify tradeoffs

State Machine Hazard
— Analysis

Deviation Analysis (FMECA)

Mode Confusion Analysis

Human Factors Evaluation
Other safety constraint
evaluations
Design and construct
components

I Safety Verification

Safety Testin
Verification y 9 - =

Software FTA

Operational Analysis

Operational Use

Change Analysis

Periodic audits

Figuge 1:

Incident and accident analysis =

<—HmTm>w

Z0——>»Z1mOoTNZ—

SmHdn=<wm

Figure 1 shows our design of a system safety program. Such a process is highly
iterative and includes continual updating of what has been done previously as new
information is gained through the system development process. In order to make the
diagram less cluttered, the backward links are not shown, but note that the safety
information system assists in the iteration process. An effective safety information
has been found to rank second only to top management concern about safety in
discriminating between safe and unsafe companies matched on other variables [1].

The center column of Figure 1 shows the standard system engineering tasks while
the right column shows the special safety tasks and how they interact. We also
performed some operations research modeling and analysis to demonstrate how infor-
mation might be obtained and used to assist in making tradeoffs between alternative
system designs.

We can only only provide an overview of the safety assessment and approach in
this paper. Interested readers will find the final project report (containing many more
details) at URL: http://www.cs.washington.edu/projects/safety /www/dfw. The as-
sessment contained the following components:

Preliminary Hazard Identification and Standard Hazard Analyses. A safe
system is one that is free from accidents or unacceptable losses. Accidents result
from hazards, where a hazard is defined as a system state or set of conditions that
can lead to an accident (given certain other, probably uncontrollable or unpredictable
environmental conditions). In safety engineering, any safety assessment starts with
identifying and analyzing the system for hazards. Once the hazards are identified,
steps can be taken to eliminate them, reduce their likelihood, or mitigate their effects.

In addition, some hazard causes can be identified and eliminated or controlled.
Although it is usually impossible to anticipate all potential causes of hazards, obtain-
ing more information about them usually allows greater protection to be provided
with fewer tradeoffs, especially if the hazards are identified early in the design phase.
The hazards and the hazard causes can be used to write system safety requirements
and constraints.

We performed a standard PHA using the DFW TRACON as an example, and
wrote some preliminary safety requirements and constraints for CTAS and for air
traffic control in general. As part of the PHA, we produced parts of a fault tree for
TRACON operations that are related to the operation of CTAS. The information we
generated was used in the demonstration of our analysis techniques.

Modeling. In order to do more than an evaluation of only the high-level ATC con-
cept, a detailed specification or model of the behavior of the system components is
required. A high-level design may appear to be safe while the detailed design contains
hazardous component interactions. The hazards and design constraints identified in
the first step must be traced to the system components, and assurance must be pro-
vided that the hazards have been eliminated or mitigated and the design constraints
satisfied. Although theoretically this type of process could be performed on the de-
tailed design of the system (including code if the component is a computer), the only

Size Designation Engine Type Aircraft Priority

‘ Size Unknown }— ‘ Engine Unknown }7 Not Given Priority
‘ Heavy ‘7 ‘ Jet }— Given Priority
FAST
AIRCRAFT | 5™ | [Tubowor |
I[\?II_O)E))S(I]' ‘ Large F ‘ Piston ‘7 Assigned Runway
‘ Not Assigned }—
Controlling Sector SR ‘ Prefer 1L F
‘ Center ‘7 Status
. | Pefer IR
uence Number
‘ Feeder East ‘4 Not Assigned ‘ Selected 11 ‘7
| FeederWest | Asigned By FAST— | Sdected 1R |—

‘ Runway 1L P ‘Assigned Manually}i ‘ Frozen 1L }7
‘ Runway 1R }— ‘ Cannot Compute }7 ‘ Frozen 1R }7

Figure 2:

practical approach is to provide hierarchical models and break the process up into
steps. We built a state-based, blackbox model of the components of the DFW TRA-
CON using a language called SpecTRM-RL that is readable and understandable with
minimal training but has a formal foundation that allows analysis. Figure 2 shows a
small piece of the model.

Simulation and Animation. Our models are executable and we have visualization
tools to build animations appropriate to the model’s domain (in this case, air traffic
control). Our IB toolkit is an interface and visualization builder that allows users to
build graphical user interfaces and animations of SpecTRM-RL models quickly and
easily. Once the graphical design of the animation is completed, it can be attached
to a SpecTRM-RL model to control the model’s execution, display the execution
outputs, or display internal states or actions of the model during execution.

As an example, we have created an animation that shows the behavior of aircraft
within the TRACON area as the formal model is stepped through its states for a

given set of inputs. This animation shows the controlled airspace and the aircraft in
it, a timeline containing each aircraft’s estimated time to landing, and an altitude
indicator for the aircraft. As the model execution proceeds, the designer can see the
aircraft moving along their projected flightpaths. During the simulated execution, the
designer may click on parts of the animated display to get selected aircraft information
such as speed, assigned runway, and assigned landing sequence number.

Controller Task Analysis. Humans form an important part of the ATC system,
and they cannot be ignored in any safety analysis. We model operator procedures
in the same language (SpecTRM-RL) as the other parts of the ATC system in order
to allow executing and analyzing the ATC model as a whole. However, we use our
visualization tools to display the information for human review in a more appropriate
format. Figure 3 shows part of the task performed during a handoff procedure.
This new language is used to display the nominal tasks that the controllers and pilots
perform. We appreciate that humans do not necessarily perform tasks in the expected
way. However, the first step in a safety analysis is to determine whether the nominal
or expected behavior is safe. The implications of human error or deviations from
nominal behavior is investigated in our other analyses. For the demonstration of the
methodology, we built animations of the controller task models, including one that
indicates through color coding the current cognitive and perceptual load on the pilot.

Completeness and Consistency Analysis. Accidents involving computers can
usually be traced to incompleteness or other errors in the software requirements spec-
ification, not coding errors [3, 2]. Once a blackbox model of the required system
behavior has been built, the model can be evaluated as to whether it satisfies design
criteria that are known to minimize errors and accidents. We have developed such a
set, of criteria to identify missing, incorrect, and ambiguous requirements related to
safety in process control systems. These criteria include much more than the mathe-
matical completeness that is checkable on most formal models, although we can check
this too.

State Machine Hazard Analysis. Hazard analysis techniques that use backward
search start with a hazardous state and determine the events that could lead to
this state. The analysis starts from hazards identified during the preliminary hazard
analysis and identifies their precursors. The information derived about both normal
and failure behavior can be used to redesign the system to prevent or minimize the
probability of the hazard. We have found that the backward reachability graph
explodes quickly for complex systems. Many of the branches are physically impossible
or are less interesting than others, so we currently implement the process by having
the analyst start the model in a hazardous state and work back one step at a time,
using our backward simulation capability. At each step, the analyst prunes the tree
of irrelevant branches and decides which branch to follow next.

yopuey

waley 1opuey
oo Bunosloy uonoalal
uonoalal o} Jopuey
suonpuod poroidwon
Jopuey
10B1U02 [enIul 10eIU0D 1de0oy - paniaoal aoedsire
sJojid panigoay |~ 19]|03U00 femut sojd Joiug ssaid 4n220)sanbai yopueH jospisino |-
LIm 10BIU09 10} Bunrepn soue)dadae Joj Jopuey J1aM LRI
mm.ﬁm " suonpuoD apeniu|
19]]0J1U0D 1XaN
Jopuey pajoslal
-
o | 19]|011U0d IXaN Jopuey 1o}
tou_:m; SUOIIPUOD BINSUD 0}
waeY sainpaooid areniu]
1011d 0}
- abueyd bayy J8jjo4uoo
gl - 1n220 = WOJ} PBAISIBI
noawiL anssi-al 0} Apeay o JnoawiL } N . 1220
o 9su0dsal ON | yopuey 1oy
suonpuod suonipuod
Y Jopuey Y
jo1d woyy jond Umaooom asuodsal areniu| Jopuey 13]|043U0D JUBLIND
3oeq peal -y 0) abueyd — — S,J3]|01)u0d — 6 — Aq pajjoiuod -
-¢ -¢ -¢ - -¢
103 Bunrem sbessaw ‘bayy Buinss| 1900 JopueH ooue 1Xau Joy Bunrepy H ssaid uneniu| 1n220 yopuey Butaq yesony
abueyd abueyd ta puey J10j suonipuod
AKousnbauy Kouanbaiy 10300y
jwisues | 10§ SUOBIPUOD

19]]0/1U0D 1UalInd

Figure 3

Deviation Analysis. Forward search techniques start with an initiating event and
trace it forward in time. Applying a Failure Modes and Effects Criticality Analysis
(FMECA), HAZOP, or any other forward analysis technique to software is compli-
cated by the large number of ways that computers can contribute to system hazards.
In addition, when a forward analysis traces a failure to a computer component, it may
be difficult to determine what affect the failure will have on the software behavior and
outputs, particularly before the software has been implemented. We solve this prob-
lem using a new forward analysis technique for software called Software Deviation
Analysis (SDA).

SDA is based on the underlying assumption that many accidents are the result of
deviations in system variables. A deviation is the difference between the actual and
correct values. SDA can determine whether a hazardous software behavior (usually
an output) can result from a class of input deviations, such as measured aircraft speed
too low (the measured or assumed speed is less than the actual speed). SDA is a way
to evaluate system components for robustness (in the security community this is often
called survivability) or how they will behave in an imperfect environment.

Human Error Analysis. Humans are and will continue to be for quite some time
an important part of any air traffic control system. Therefore, an effective safety
program cannot just look at the automated parts of the system but must consider
the impact of human error on the system and the effect of system design on human
error. Increased automation in complex systems has led to changes in the human
controller’s role and to new types of technology-induced human error. We approach
this problem in two ways.

The first is a method we are developing for using our formal system models to
detect error-prone automation features early in the development process while signif-
icant changes can still be made. We have taken what has been learned by cognitive
psychologists from past accidents, incidents and simulator studies, and identified a
set, of automation design flaws that are likely to induce errors in humans that interact
with the automation. The information produced from this mode confusion analysis
can be used to redesign the automation to take out the error-inducing features or to
design better human-machine interfaces, operator procedures, and training programs.

Our second approach to safety analysis of human error is a more traditional form
of human factors analysis. For this DEFW CTAS study, we first looked at the types of
human errors in the current ATC system and then performed a comparative analysis
of the controller’s job before and after CTAS. Potential safety issues were identified
involving decreased situation awareness, increased vigilance requirements, and skills
degradation. Normally this step would be followed by running experiments to deter-
mine the effect of the changes on human performance with respect to these identified
safety issues. However, the time limitations of this study did not allow us to perform
this final step. Instead, we described some relevant hypotheses and an experimental
paradigm for evaluating these hypotheses.

Operations Research Modeling and Analyses. Safety is not the only goal of an
air traffic control system. The systems engineering process involves making tradeoffs
between various goals such as safety, throughput, and fuel efficiency. If a proposed
upgrade turns out to degrade safety significantly while providing only minimal benefit
in terms of throughput or fuel economy, then it may not be worthwhile to implement
it or an alternative design may provide a better result. We used a discrete-event
simulation to compare the total delay and fuel burn for five different scheduling
algorithms that may be used to control aircraft from arrival at an enroute ATC
center to their arrival at a feeder gate into the TRACON.

The scheduling algorithms ranged from a basic algorithm that does not allow
any passing or altitude overtakes and simply delays aircraft, to a more sophisticated
scheduling algorithm that allows passing and introduces a freeze horizon. The schedul-
ing algorithms may be viewed as having different levels of safety. For example, two of
the five scheduling algorithms seek the path for each aircraft that minimizes fuel burn,
even though this path may result in two or more advisories from the controller. The
other three scheduling algorithms minimize the number of advisories issued to reduce
the number of communications between controller and pilot and thereby minimize an
important causal factor in accidents.

The models can provide information such as the amount of delay, or the amount
of fuel consumed for various air traffic profiles operating under different scheduling
algorithms. We showed how these models can be used for tradeoff studies, in order
to evaluate proposed scheduling algorithms in CTAS.

Intent Specifications. The types of formal modeling and hazard analysis described
so far provide a comprehensive assessment methodology. The most effective way
to create a safe system, however, is to build safety in from the beginning. The
preliminary hazard analysis should start at the earliest concept formation stages
of system development and the information should be used to guide the emerging
design. Later, system and subsystem hazard analysis information is used to evaluate
the designs and make tradeoff decisions.

Intent specifications support both (1) general system development and evolution
and (2) system safety analysis. The design rationale and other information that
is normally lost during development are preserved in a single, logically structured
document whose design is based on fundamental principles of human problem solving.
Safety-related requirements and design constraints are traced from the highest levels
down through system design, component design, and into hardware schematics or
software code. An important feature of intent specifications is that they integrate
formal and informal specifications and enhance their interaction.

We did not have the information necessary to build a complete intent specifi-
cation for CTAS. Instead, we built a sample intent specification for TCAS, an air-
borne collision avoidance system with similar aircraft tracking functions. The sample
TCAS system specification (800 pages long) can be viewed at the following URL:
http://www.cs.washington.edu/research /projects/safety /www /intent.ps

Other Parts of a Complete Safety Program. We did not perform any safety
testing or evaluation of the actual code, but this would obviously be part of any
complete safety program. During operational use of the system, incident and ac-
cident data would be collected and analyzed along with analysis of any changes or
modifications. Change analysis uses the same procedures as those used during the
original development. Our modular models along with the tracing of safety-related
constraints to the design and code that is part of an intent specification should make
it easier to perform the change analysis. In addition, periodic audits should be made
to ensure that the assumptions underlying the safety analysis (which are recorded in
the intent specification) have not been violated by the natural changes that occur in
any system over time.

Summary

How best to assure safety in complex systems is an open question. We have de-
scribed one approach to achieving this goal that has been demonstrated on several
real systems, including proposed ATC automation upgrades. Safety, however, is not
something that is simply assessed after the fact but must be built into a system.
By identifying safety-related requirements and design constraints early in the devel-
opment process, special design and analysis techniques can be used throughout the
system life cycle to guide safe software development and evolution.

References

[1] Urban Kjellan. Deviations and the Feedback Control of Accidents. in J. Ras-
mussen, K. Duncan, and J. Leplat (eds.) New Technology and Human Error, pp.
143-156, John Wiley & Sons, 1987.

[2] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-Wesley
Publishing Co., 1995.

[3] Robin R. Lutz. Analyzing Software Requirements Errors in Safety-Critical, Em-
bedded Systems. International Symposium on Requirements Engineering, San
Diego, 1992.

