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ABSTRACT

Validation of software requirements is an important part
of software engineering. This paper describes a new
safety analysis technique called software deviation anal-
ysis to help identify weaknesses in how software handles
an imperfect environment. The technique propagates
deviations in software inputs to output deviations. A
qualitative analysis is used to improve the search effi-
ciency.
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INTRODUCTION

Because a large portion of software-related accidents
arise from errors or omissions in the software require-
ments specification, validation of the safety of the spec-
ification is an important goal, especially if it can be
done early in the development process. Although sys-
tem safety engineers have developed various types of
hazard analysis techniques for electro-mechanical sys-
tems, these techniques do not apply when computers are
introduced to control dangerous and complex systems.
Our goal is to take the basic procedures of system haz-
ard analysis and to translate them into techniques and
tools that can be applied to software and the software
development and validation process.

This paper presents a new technique called software de-
viation analysis (SDA) [11], which is based on the under-
lying systems theory that accidents are caused by devi-
ations in system parameters. Using a formal software or
system requirements specification, the analyst provides
assumptions about particular deviations in software in-
puts and hazardous states or outputs, and the procedure
automatically generates scenarios in which the analyst’s
assumptions lead to the specified deviations in the out-
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puts.

SDA is based on the concept of a deviation. A deviation
is the difference between the actual value of a system
variable and the expected (or “correct”) value. Exam-
ples of deviations are “too high” and “too low.” SDA
analyzes the effect of deviations in software inputs on
software output.

The basic inputs to the SDA algorithm are a formal soft-
ware requirements specification, a list of safety-critical
software outputs, and some initial assumptions about
the values of the software inputs, including at least one
deviation in these inputs.

The output of the SDA algorithm is a list of scenarios.
A scenario is a set of deviations in the software inputs
plus constraints on the execution states of the software
that are sufficient to lead to an output deviation in a
significant variable.

The basic procedure can be illustrated by a simple ex-
ample from an actual project. First, the analyst pro-
vides a formal specification, which in this case is a pro-
posed automated highway system for the California De-
partment of Transportation. The automated highway
system (AHS) directs automobiles to form groups within
a lane, called platoons. Each automobile has a software
controller that directs the movement of the car relative
to the platoons. Figure 1(a) shows a page from the
AHS specification, written in Requirements State Ma-
chine Language (RSML) [5]. The relevant parts will be
explained shortly.

Next, the analyst identifies the safety-critical outputs.
For simplicity, in this example we will assume that
all outputs are critical. The next step is to define
the initial input deviations. One of the input vari-
ables listed at the top of the AHS specification is
Num_vehicles_in_platoon, which is the number of au-
tomobiles that are in the same platoon as the con-
troller’s automobile. Suppose the analyst wishes to find
out what happens when this input variable is less than
the actual size of the platoon.

For this model, the SDA algorithm identifies two scenar-
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Figure 1: (a) A portion of the Automated Highway System Example. (b) A transition from the Automated Highway
System. The analyst has assumed that the variable Num vehicles_in platoon is lower than the actual value.



ios in which the input deviations lead to a safety-critical
output deviation, one of which is presented here.!

The initial assumption, as stated above, is that
Num_vehicles_in_platoon is too low. One of the tran-
sitions that references this input is the transition from
No_Maneuver to Busy (refer to Figure 1.) This transition
is taken if the controller has been requested to merge two
platoons (the triggering event) and the guarding condi-
tion on the transition permits the platoons to merge.?
For this scenario, the SDA algorithm constrains the soft-
ware execution state in order to propagate the initial
deviation through the transition, causing the controller
to enter Busy when it should not (a boolean deviation.)

The input variable Num_vehicles is the number of ve-
hicles wanting to merge with the platoon and the first
constraint on the software state that SDA makes is that
Num_vehicles is not too high, i.e., the value received is
either the same as or less than the proper value. This
constraint ensures that the sum of the two inputs in the
fifth row of the table is too low. The deviation could be
“masked” if Num_vehicles is too high. The second con-
straint that the algorithm makes is that the fifth row is
true, namely, the maximum number of vehicles has not
been exceeded based on the information provided to the
software. The third constraint is that the sum of devia-
tions for Num vehicles_in_platoon and Num_vehicles
exceeds the number of empty positions left in the pla-
toon. In other words, the fifth row should be false,
which it would be if the deviations were not present.
The algorithm presents this logic in the following way
(rearranged slightly for clarity):

MAX_VEHICLES_IN_PLATOON — value(Num_vehicles)
— value(Num_vehicles_in_platoon) <
—dev(Num_vehicles) — dev(Num_vehicles_in_platoon)

where value() is the value read by the controller and
dev() is the difference between the actual and cor-
rect values (negative means too low.) The left-hand
side of the inequality is the number of spaces avail-
able according to the two inputs read by the controller
(Num_vehicles and Num vehicles_ in platoon.) The
right-hand side of the inequality is the size of the error
(the deviation is negative, so the right-hand side is posi-
tive.) The inequality therefore shows that the deviation
is greater than the number of spaces perceived to be
available, and row five would be false if there had been
no deviation in the inputs, inhibiting the transition.

The fourth constraint that the algorithm generates is
that (1) the controller’s automobile is the lead vehicle

1The search for this example takes approximately 1.2 MB and
25 seconds on an Intel 80486DX2 at 66 MHz.

2The condition is represented by an AND/OR. table, which is
true if any of its columns is true. A column is true if all of the
rows that have a “T” are true and all of the rows with an “F” are
false.
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Figure 2: Overview of SDA procedure.

in the platoon, (2) the distance between the platoons is
sufficient, and (3) the automobile is traveling at a con-
stant rate of speed. These are the conditions in rows
two through four, respectively, making the second col-
umn and the entire condition true.

The final constraint generated by the algorithm is that
the triggering event is true, i.e., that a request has been
made to merge platoons and the controller is in state
No_Maneuver. The transition is thus enabled and the
output action Merge_ok is generated. Both the transi-
tion and output action are deviations since they should
not have occurred. Merge_ ok triggers the output that
gives permission to merge platoons. The resulting sys-
tem state is a platoon that exceeds the threshold for safe
platoon size. Thus we have identified a scenario, i.e.,
deviations in one input plus constraints on the software
execution state that will lead to a hazardous output.

OVERVIEW OF THE SDA ALGORITHM
Figure 2 shows an overview of the SDA process. The
analyst provides a formal software requirements specifi-
cation, which the procedure automatically converts into
a more basic representation, called a causality diagram.
The causality diagram is an internal data structure that
encodes causal information between system variables,
based on the specification and the semantics of the lan-
guage in which it is written. The simplicity of causality
diagrams makes the search algorithm more straightfor-
ward and easier to adapt to a new specification or pro-
gramming language.

Each node in the specification is linked to its corre-
sponding node in the causality diagram, so that the
results of the analysis can be translated from the causal-
ity diagram back into the language of the specification,
avoiding the need for the analyst to comprehend or even
see the causality diagram.

The procedure uses deviation formulas, which define
how deviations are related. This information is incor-



porated directly into the causality diagram to create an
augmented causality diagram.

SDA uses qualitative mathematics on the augmented
causality diagram to evaluate deviations. Qualitative
mathematics partitions infinite domains into small sets
of intervals and provides mathematical operations on
these intervals. The use of fixed intervals simplifies the
analysis compared to iterations over the entire state
space. It also lends itself naturally to the qualitative
nature of deviations, such as “slightly too high.”

The augmented causality diagram, input deviations,
and list of safety-critical variables is passed to the search
algorithm, which constructs a tree of states. The state
formed by the input deviations is the root of the search
tree. Leaves are either dead-end searches (in which a
state does not contain any deviations) or states contain-
ing safety-critical deviations. The output of the SDA
procedure is a list of the paths from the root state to
all leaves with safety-critical output deviations.

The rest of the paper provides more details about each
part of this process along with a brief description of the
automated procedure and the results we have had in
applying SDA to specifications.

CAUSALITY DIAGRAMS

Rather than being defined in terms of a particular spec-
ification language, the search procedure is based on
causality diagrams, which encode causal information be-
tween system variables. Although a different procedure
could be developed for each separate specification lan-
guage, there are considerable advantages in developing
a procedure around a simpler language of causality. De-
velopment of the analysis procedure is simplified if the
semantics of the specification language are straightfor-
ward, simple, and explicit. A second advantage is that
the procedure can be divided into two steps: (1) trans-
lating the relevant parts of the language into a more
fundamental representation, and (2) developing a pro-
cedure for the simpler language. Finally and perhaps
most important, this tactic assists in adapting the pro-
cedure for multiple languages: It is easier to build gen-
erators of causality diagrams from multiple specification
languages than to design analysis procedures that work
on multiple, often subtly different languages.

A potential disadvantage of using a separate analysis
language is that the analyst may need to maintain two
mental models: one of the specification and one of the
analysis model. However, the translation from specifi-
cation to analysis language is automatic, so the analyst
does not need to see the analysis model in order to pro-
vide input to the procedure. In addition, a variable in
the analysis model always maps back to a single variable
or a set of equivalent variables in the specification. Thus
the procedure’s results (including a full search tree) can

be satisfactorily presented to the analyst in terms of
the specification model. The analyst does not need to
inspect the causality diagram at all.

To be suitable for automated analysis, a language of
causality must represent relationships directly (i.e, there
should be no intermediate variables or “steps” that take
no time), must be able to represent complex relation-
ships, must represent sequential dependency and simul-
taneity explicitly rather than relying on relationships
implied by the language’s semantics, and must be able
to handle both boolean and numeric system variables.

A causality diagram is a type of graph, i.e., a set of nodes
N connected by directed edges. Each node n € N has
a function associated with it that, combined with the
edges into n, defines its meaning. Some functions are
not commutative, so the edges into the nodes must be
ordered. The values of the nodes comprise the state of
the causality diagram.

Nodes in a causality diagram are divided into source
nodes and auziliary nodes. The source nodes correspond
to the system variables. Auxiliary nodes are used to
compose functions of source nodes, to propagate devi-
ations for functions of fixed arity, and to represent un-
specified input sources and output destinations.

Each node is associated with an algebraic or logical op-
erator. The operator describes the exact relationship
between a node and nodes from which it derives its
value, i.e., the causal relationships. The edges into the
node give two pieces of information. The edge’s source
node is the node that contributes its value to the des-
tination node’s operator. Each edge also describes ei-
ther a structural or sequential relationship, depending
on whether the source node contributes its value in the
same instant or in the following instant. In the figures
presented in this paper, structural edges are represented
as solid lines and sequential edges are represented as
dashed lines.

Because auxiliary nodes facilitate functional composi-
tion, the edges with an auxiliary node as source are al-
most always structural. The exception is when an aux-
iliary node serves to describe a sequential relationship
that extends beyond one step, e.g., if the source node
influences the destination node’s value with a time lag
of t steps, then ¢ — 1 auxiliary nodes are needed:

O D

A node may be both source and terminus for a sequen-
tial edge. However, there may not be any loops along
paths composed only of structural edges. This situation
is easy to discover by a search of the directed graph cre-
ated by the nodes and structural edges.
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Figure 3: Causality diagram example

Putting the concepts of structural and sequential causal-
ity together, Figure 3 shows an example of a simple feed-
back system and the corresponding causality diagram.
In a feedback control loop, sensors measure system vari-
ables and pass them to the controller, which uses them
along with an internal model of how the process oper-
ates (e.g., control laws) to generate commands to ac-
tuators (such as valves). The changes in the actuators
result in changes to system variables that allow the pro-
cess to produce the required results. The controller uses
the feedback provided by the measured system variables
to determine whether previous commands were effective
and to detect disturbances in the process that need to be
corrected. A requirements specification for the software
controller contains a black-box model of the relation-
ship (function) between inputs (the measured system
variables) and outputs (commands to change the con-
trolled system variables).

The system shown in the figure is a tank equipped with
a variable-aperture valve. The system variables are the
tank pressure, the flow of material through the tank,
and the aperture of the valve. To simplify the exam-
ple, pressure is computed as the quotient of flow over
aperture. The controller increases or decreases the valve
opening by ten units if the pressure is above the maxi-
mum of 250 units or below the minimum of 100 units,
respectively.

The causality diagram in the example contains twelve
nodes and sixteen edges. Three of the nodes represent
the system variables. The behavior of the Flow variable
is undefined. Pressure is a quotient function, with the
numerator edge originating from Flow and the denom-
inator edge originating from Aperture. Aperture is an
interesting node in that its current value depends on its
previous value, i.e., it has state. The size of the valve
aperture is equal to its previous value (indicated by a
dashed line) plus one of {—10, 0,10}, as provided by the
controller.

The remaining nodes comprise the controller (which for

process-control software would be a computer, usually
performing a much more complex function.) The pres-
sure reading is compared to minimum and maximum
values (the “<” and “>” nodes, respectively). Note
that each node is a function: For example, the domain
of the inequality functions is a pair of numbers and the
range is a boolean.

The nodes represented by are called selec-
tion nodes. The selection function is defined as follows:

xz ifb

The selection function is an important node in con-
structing the causal relationships of process-control soft-
ware, since it maps from a boolean value (e.g., some
control decision) to numeric values (e.g., output to an
actuator.)

Following the edges from the subtraction node (the out-
put of the controller) backward to the pressure reading,
one gets the expression

10 if Pressure’ > 250
{ 0 otherwise B
10 if Pressure’ < 100
{ 0 otherwise }

where Pressure’ represents the previous value for pres-
sure. This value is output to the valve actuator.

A full discussion of the translation of specification lan-
guage concepts into a causality diagram is beyond the
scope of this paper. Reese [11] has shown how to do
this in general and has also written a translator from
RSML specifications to causality diagrams. The size of
the causality diagram is proportional to the number of
system variables in the specification and the number of
mathematical operators needed to describe their basic
relationships. The causality diagrams in our non-trivial
test cases have between 5,000 and 20,000 nodes.

We show here the translation of an RSML transition
using the specification of an aircraft collision avoidance
system (TCAS II) as an example.

RSML transitions have five components:

e a source state (S),

a destination state (D),

a triggering event (E),

an optional guarding condition (C), and
an optional output action (A).

The semantics of a transition may be described by the
following logical inference:

SANENC =-S"AD'ANA,
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Figure 4: A causality diagram fragment for the transi-
tion from No_Maneuver to Busy (see figure 1b.)

where S, E, and C are the values of the source state,
triggering event, and guarding condition in one instant,
and S’, D', and A" are the values of the source state,
destination state, and output action in the next instant.
A causality diagram fragment for the transition in Fig-
ure 1b is shown in Figure 4.

A causality diagram makes the definition of each system
variable explicit. These definitions describe the normal
behavior of the system. The next step is to use devi-
ation formulas to add the causal relationships between
deviations.

DEVIATION FORMULAS
AUGMENTED DIAGRAMS

The concept of a deviation needs to be defined both for
logical and numeric variables. Booleans are straightfor-
ward since they can only take two values; consequently,
an actual value is either a deviation from the correct
value or it is not. The “exclusive OR” operator satisfies
this definition. X @ Y is true when X is different from
Y and false when they are the same.

AND

A numeric deviation is defined as the difference between
the actual and correct values, i.e., the amount added to
or subtracted from the correct value to obtain the actual
value:

Xd = Xa - X67

where X is the variable, and the subscripts indicate de-
viation, actual, and correct values, respectively.> For
example, if a pressure reading should be 10 p.s.i. but is
actually 7 p.s.i., then the deviation is -3 p.s.i.

To relate these values back to the causality diagram,
one could assign some correct values and use the re-
lationships expressed in the causality diagram to de-
rive other correct values. Actual values can be derived

3Note that the deviation could be calculated in other ways.
For example, X4 could be the ratio X2 Under this definition, a
value of X; = —0.5 would mean that X, has the opposite sign
of and one-half the magnitude of X.. While this formula is quite
useful, X; does not have a value when X, = 0 and it is virtually
meaningless when X, = 0.

from other actual values in the same way. For example,
Pressure, = Flowa/Aperturea.

Deviation values cannot be calculated using the causal-
ity diagram as it is: Pressurey is not always equal
to Flows/Aperture,. (In fact, if the actual value of
Aperture is correct, then Aperture; = 0 and this ra-
tio is undefined.) The causality diagram must be aug-
mented with deviation formulas so that the relationships
between deviations are explicitly and properly repre-
sented. A deviation formula is the way by which the
deviations of a function may be determined from the
deviations and actual values of its inputs.

Both the boolean and numeric deviation definitions have
two degrees of freedom, i.e., knowing any two of the
three variables (correct value, actual value, and devia-
tion) allows calculation of the third. Thus, correct val-
ues can be replaced by a function of the actual and devi-
ation values, as the following example for multiplication
shows:

(XY)a = (XY), - (XY).
= X,Y, - X.Y,
= XY, — (X, —Xq) (Yo —Yy)
= XY, — (X.Y, — XgY, — XYy + X4Yy)
= Xa¥Yo + XYy — X4Yy

Replacing the correct value with its computation us-
ing actual values and deviations has two advantages: it
simplifies the analysis because fewer values need to be
calculated, and it simplifies the interpretation of the re-
sults because the analyst is only presented with what
actually occurs rather than mixing what should occur
with what does occur.

A complete set of deviation formulas and their deriva-
tions can be found in [11]. The augmented causality
diagram of the tank example is rather larger than the
original diagram, and the reader will not be burdened
with a complete example, but the fragment representing
Pressureq is shown in Figure 5.

QUALITATIVE MATHEMATICS

Qualitative mathematics is the creation and study of
calculi of small ordered sets, called qualitative domains.
Qualitative domains partition the system’s quantitative
domains, usually the set of real numbers. Formally, a
qualitative domain is defined by a function mapping
members of the quantitative domain to members of a
small set. In other words, if D is some domain (e.g.,
the integers or complex numbers) and £ is a (small) fi-
nite set, then a function M : D — L defines £ as a
qualitative domain over D.

The area of research that introduced qualitative mathe-
matics is most commonly referred to as “qualitative rea-
soning,” although variations in research emphasis have
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Table 1: Sign algebra.
led to such labels as “causal reasoning,” “qualitative

process theory,” and “qualitative analysis.” Qualitative
reasoning has been proposed as a method for system
control, as an educational tool, and for system analysis.
SDA falls into the latter category and so can be termed
more accurately as qualitative analysis.

Note that when viewed from the perspective of a cal-
culus, the causality diagram may be seen to be a set of
axioms. Each node N of the diagram can be rewritten
as N = f(I,...), where f is the node’s function and
I, ... are input nodes. An analysis procedure may ap-
ply the calculus to the set of system axioms to produce
“theories” of system behavior.

A simple and commonly used qualitative domain is the
set of signs of the real numbers, Sg = {—,0,+,7}. Sg
partitions the real numbers into two sets, the positive
(+) and negative (—) numbers. Zero (0) is the border
between the two sets. The special symbol “?” repre-
sents an unknown value and is equivalent to the union
of the other symbols. The algebraic functions over Sg
are referred to as sign algebra in the literature. Addition
and multiplication are shown in Table 1. Qualitative
mathematics is not limited to algebraic functions. For
example, Schaefer constructs an interesting model for a
family of nonlinear oscillating functions [12].

Qualitative mathematics has the advantage of being ef-

ficient to calculate and relatively easy to understand.
Similar values can be grouped and treated collectively
by the qualitative functions.

A disadvantage of qualitative analysis is that poten-
tially useful information is lost in the discretization of
the quantitative domains. This is not unusual, as all
models are incomplete approximations of reality. The
analyst must decide whether a qualitative analysis, or
any method of analysis, is appropriate and useful for a
particular system.

Some operations over qualitative sets do not fall neatly
within one of the intervals. For example, note that the
sign algebra tables contain question marks in some cells.
Increasing the number of elements in the qualitative set
alleviates this problem to some degree. For example,
one could add two elements representing the fraction
intervals (—1,0) and (0,1).

Another potential weakness of qualitative mathematics
is that of scale. Specifications involve both large and
small numbers and the qualitative set should be able
to handle both. We use a logarithmic partitioning of
the real numbers to solve this problem. For example,
the following number line is divided into eleven inter-
vals (including the zero point interval), with a base of 2
(again, Reese [11] provides a set of proofs of the calculus

of this qualitative set):
Qualitative Values

0
-5 -4 3 2112, 3 4 5

The analyst may choose to refer to the qualitative set
elements, the intervals they represent, or to symbolic
labels such as “slightly too high.” The HAZOP guide
word TOO-HIGH is represented by the qualitative subset
{1,2,3,4,5}, which is (0,+00). If the analyst chooses
to assume that an input is a “little low” then —1 may
be chosen, which is the interval [—2,0) for the example
given above. “Very high” could be represented by the
qualitative value 5, which is all numbers greater than
16. Of course, choosing a larger number of elements
and a larger base allows a greater partitioning of the
real numbers. Refer to [11] for a complete description
of the logarithmic partitioning strategy.

In a manual hazard analysis, analysts need to determine
the result of a particular deviation. To do this, they in-
vestigate what will definitely occur given the input de-
viation as well as what else could occur under specific
conditions—i.e., they make assumptions about the sys-
tem state. They must also back-track occasionally to
determine whether two separate assumptions are con-
sistent, i.e., whether the scenario they are proposing is
realistic. SDA also needs to include these three types of



search, i.e., to propagate deviations forward. The math-
ematical equivalent to the informal activity is termed
the assumptive function. Each operator has three func-
tions defined: forward definite, forward assumptive, and
backward definite.

The forward definite function is simply the operator
itself, but applied to sets of intervals. For example,
{0,+}/{=} = {—,0} under sign algebra. Allowing op-
erations over sets of intervals rather than single inter-
vals greatly reduces the size of the search tree, since a
separate branch does not have to be created for each
combination of values.

The forward assumptive function is used only on devi-
ation nodes (the nodes created for the augmented di-
agram). If one of the inputs to a node is a deviation
but the value of the node itself is unknown, then the
forward assumptive function attempts to find values for
the other inputs that will cause the deviation to propa-
gate to the node. For example, suppose that a deviation
node is the product of two other nodes, one of which is
too high ({+}) and the other is unknown ({—,0,+}).
In order to propagate the high value, the unknown in-
put is assumed to be {—, +}, since a zero will cause the
output to be zero, masking the deviation. With the new
constraint the output is now either too high or too low.

The backward definite function is essentially the inverse
relation of a node’s operator. See Reese [11] for defini-
tions of these relations.

ANALYSIS PROCEDURE

The SDA procedure is a forward search procedure—
it starts with a deviation in software inputs prior to
being input to the software and attempts to find ways
in which the deviation can lead to hazardous software
outputs. As discussed in the overview, the analysis uses
a system specification that is then converted into an
augmented diagram. The analyst provides two other
pieces of information corresponding to the starting and
ending points of the search: (1) an initial system state,
including at least one deviation, and (2) the outputs
that are safety-critical. The procedure searches forward
from the initial state, attempting to find states in which
a safety-critical output deviation occurs.

The search procedure is quite complex, and we can only
describe it briefly here. The forward and backward def-
inite functions described earlier are used to construct a
chain of states representing what will definitely result
from the initial state. This chain of states is termed a
scenario because it describes a sequence of events that
the system can follow. The chain begins with the initial
state and terminates with a state that either contains a
safety-critical deviation or no deviation at all. A final
state that contains a safety-critical deviation indicates
that the analyst’s input deviations combined with the

algorithm’s constraints on the software state will always
result in a hazardous deviation.

Whether or not the chain leads to a hazardous devi-
ation, the procedure can continue the search by con-
straining the software state (using the forward assump-
tive function described earlier.) Constraints can be
added not only to the initial state but to every state in
the chain. The forward and backward definite functions
are applied to these additional constraints to create an-
other chain of states. The new chain branches from the
state to which the constraints were added and ends in
either a safety-critical deviation or a dead-end.

New constraints can be added to states in the new state
chains. The analysis procedure continues in a breadth-
first manner, building a tree of state chains, each ending
in either a dead-end or hazardous deviation. The depth
of each leaf of the tree corresponds to the number of
additional assumptions made to reach that leaf. The
procedure finishes when it either runs out of constraints
that it can make or the depth reaches some predefined
limit set by the analyst. Finally, the procedure provides
the analyst with scenarios by tracing each path from the
initial state to all ending states that contain hazardous
deviations.

The number of possible states is exponential in the num-
ber of nodes. The search tree can in the worst-case con-
tain each state in the state space, so it can also grow
exponentially to the number of nodes. The algorithm
maintains the visited states in a hash table so the size of
the search tree can grow no larger than this theoretical
maximum.

SDA has been applied to three real-world examples.
It was first applied to the Traffic Alert and Collision
Avoidance System II (TCAS II), an avionics system de-
signed to provide pilots with escape maneuvers from
intruding aircraft. The authors found that when an in-
correct identifier is received by TCAS (perhaps as a re-
sult of a transmission error) there are circumstances in
which an escape maneuver is not displayed to the pilot
when it should be. The procedure has also been applied
to a developmental aircraft guidance system and a pro-
posed automated highway system with similar results.
The time required ranged from about 10 seconds to ap-
proximately 20 minutes. The search space for these ex-
amples ranged from a single state (e.g., the initial state
contained a significant deviation) to several thousand
states.

RELATED METHODS

The type of hazard analysis closest to software devia-
tion analysis is called HAZard and OPerability analysis
(HAZOP). HAZOP is a review procedure developed for
the British chemical industry in the 1950’s to cope with
potential hazards and other disturbances in operations.



NONE Intended result not achieved.
MORE Too much of some parameter.
LESS Not enough of a parameter.

AS WELL AS Unintended activity or material.
PART OF Parts of the parameter are missing.
REVERSE Value is opposite of intended value.

OTHER THAN Something other than
intended result happens.

Table 2: HAZOP guide words (adapted from Leve-
son [6].)

The goal of a HAZOP is to identify operational devia-
tions from intended performance and study their impact
on system safety [13]. The HAZOP procedure is carried
out by a HAZOP expert (the leader) and a team of sys-
tem experts. The leader poses a battery of questions
to the experts in an attempt to elicit potential system
hazards. A HAZOP is basically an exploratory analysis,
as neither potential faults nor hazards have been iden-
tified beforehand [8]. The HAZOP leader hypothesizes
an abnormal condition and analysis proceeds in both
directions, determining whether and how the condition
is possible and what effects it has on the system.

The analysis is based on a systems theory model of ac-
cidents [6], in that it concentrates on the hazards that
can result from component interaction, i.e., accidents
are caused by deviations in component behavior. The
basic document that a HAZOP draws from is a pipe-
and-process diagram. Each pipe has certain process pa-
rameters, such as pressure, temperature, and chemical
composition. A list of guide words is applied to each
parameter to yield an inventory of deviations from nor-
mal or expected behavior. See Table 2 for a typical list
of guide words. An example of a deviation is the guide
word “MORE” applied to pipe A’s temperature. The
analysts are asked the two questions “What is the effect
of pipe A’s temperature being too high?” and “How
can pipe A’s temperature get too high?”

HAZOP has several limitations. First, it is time- and
labor-intensive [6], in large part due to its reliance on
group discussions and manual analysis procedures. Sec-
ond, HAZOP analyzes causes and effects with respect to
deviations from expected behavior, but it does not an-
alyze whether the design, under normal operating con-
ditions, yields expected behavior or if the expected be-
havior is what is desired.

A third limitation arises from the fact that HAZOP is
a flow-based analysis. Deviations from within compo-
nents or processes are not inspected directly; instead,
a deviation within a component (as well as a human
error or other environmental disturbance) is assumed
to be manifested as a disturbed flow [13]. A purely

Component Guide Word

Whole machine gross failure

Misc. parts random failure

Signal low, high, invariant, drifting, bad
Actuator driven/failure high, driven/failure

low, stuck, drifting

Table 3: Components and guide words suggested by
Andow [1].

OMISSION Intended output missing.
COMMISSION Unintended output.
EARLY Output occurs too soon.
LATE Output occurs too late.

COARSE INCORRECT
SUBTLE INCORRECT

Output’s value is wrong.
Output’s value is wrong,
but cannot be detected.

Table 4: Computer HAZOP guide words suggested by
McDermid and Pumfrey [7].

flow-oriented approach may cause the analyst to ne-
glect process-related malfunctions and hazards in favor
of pipe-related causes and effects.

Because HAZOP concentrates on physical properties of
the system [13], it is not directly applicable to analyz-
ing computer input and output. Several manual tech-
niques have been suggested to extend HAZOP to in-
corporate inspection of computer hardware and soft-
ware. In each of these, the procedure is essentially
identical to a standard manual HAZOP except that the
guide-words are changed and the model of the system
may differ from the original pipe-and-process diagram.
Andow [1], for example, proposes augmenting a stan-
dard HAZOP with the components and guide words
listed in Table 3. Burns and Pitblado [2] propose apply-
ing the guide words “no,” “more,” “less,” and “wrong”
to all computer inputs and outputs.

McDermid and Pumfrey [8] suggest applying a differ-
ent list of guide words (see Table 4) using a data-flow
diagram of the software design specified in a language
called MASCOT. They apply their guide words to soft-
ware outputs only so their procedure is really closer to a
Failure Modes and Effects Analysis (FMEA) than a HA-
ZOP, where the six “guide words” are used as generic
modes of software failure. No evaluation is made of
whether the components could actually fail in this way
given their specified functionality but the potential ef-
fects of such failure modes are evaluated.

One problem with developing an automated technique



based on a MASCOT specification is that only data flow
(or “information flow” in the authors’ terminology) can
be analyzed. While this strategy is faithful to the stan-
dard HAZOP procedure, it precludes an analysis based
on deviations in system components other than data
paths. This weakness does not theoretically limit the
technique’s ability to find plausible hazards, since every
deviation of a component’s state either causes a devia-
tion of an output parameter in the data-flow diagram
or else it is not meaningful. However, without looking
at the defined or required functionality of the software
itself, the analysis is limited in the type of information
that can be obtained. A primary goal of software haz-
ard analysis is to identify weaknesses in the specified
software functionality, and an analysis that stops at the
border of each component does not provide the neces-
sary detail to find this type of problem.

Another difficulty in developing an automated technique
based on McDermid and Pumfrey’s list is the guide word
“subtle incorrect”. Whereas it is trivial to generate
predicates and test cases based on a parameter being
“high” (e.g., “T > Tyaz” and “T = Tppaz + 1,7 respec-
tively), a deviation that is defined to be an erroneous
value that “cannot be detected” defies elaboration.

The generality of the guide-word “COARSE INCORRECT”
also leads to problems. This single guide word replaces
several standard HAZOP guide words, such as “HIGH”
and “LOW” and leads to loss of what can be important
information.

Other manual techniques are variants of the ones de-
scribed [4, 9, 10, 3]. All of these methods suffer from two
weaknesses with respect to analyzing software. First,
being manual techniques they depend on human under-
standing of the proposed software, which can be quite
limited. Whereas the components of a pipe-and-process
diagram usually conform to straightforward and well-
understood laws, each instance of a software controller
can have a complex and novel behavior: The behavior of
pumps and valves is not nearly as complex as software
can potentially be.

Second, the manual techniques adhere to the HAZOP
principle of identifying deviations in the connections,
i.e., the computer inputs and outputs only. Accordingly,
they do not provide guidance for following deviations
into the control logic. The task of determining how a
deviation in a software input is manifested at its outputs
is left wholly up to the analyst.

In contrast to these manual techniques that try to do
no more than HAZOP (which was originally designed
for analog systems), software deviation analysis is an
automated procedure that can trace the effects of devi-
ations in component inputs to their effects on the out-
puts and eventually to important system parameters.

The analysis can be applied to any system or software
requirements specification that defines the required re-
lationship (function) between inputs and outputs and
thus can be used early in system development to iden-
tify hazards so they can be eliminated or controlled.

Digraph methods use a sort of qualitative calculus to
analyze flow deviations. However, digraph deviations
are indistinguishable from normal relationships. That
is, influences are only considered deviations if they are
qualified with a fault. For example, an influence of —1
if the valve is accidentally reversed is a deviation from
the norm, but —1 is not the value of the deviation. It
is simply the influence of one variable on another vari-
able, the same as described for normal relationships. In
contrast, the calculus developed for SDA is specifically
a calculus of deviations: The deviation values charac-
terize the a parameter’s actual value in relation to its
correct value.

A problem with the digraph algebra is that while the
qualitative calculations are internally consistent, the
calculus is not consistent with respect to the quanti-
tative domain. For example, suppose that L is the
boundary between small and large values. (L — 1)
is a small positive, and the sum of two small posi-
tives is a small positive under digraph algebra. But
(L—1)+(L—1) = 2L — 2 is large for L > 2, so the
result of adding two numbers and converting the result
to a digraph value is inconsistent with converting the
two numbers and then adding them qualitatively.

CONCLUSION

As software assumes a larger role in the control of safety-
critical systems, a greater burden is being put on ana-
lysts to understand how the software behaves in an im-
perfect environment. Correct and complete software re-
quirements specifications must define behavior that can
handle environmental disturbances without contribut-
ing to system hazards. Although forward search proce-
dures, such as HAZOP, have been found to be useful in
the hazard analysis of systems made up of analog com-
ponents, it needs to be extended to be appropriate for
systems that contain digital components. This paper
describes a requirements validation method that incor-
porates the beneficial features of HAZOP (e.g., guide
words, deviations, exploratory analysis, and a systems
engineering strategy) into an automated procedure that
is capable of handling the complexity and logical nature
of computer software.

SDA may be thought of as a type of symbolic execu-
tion: The specification is used to propagate symbols
representing classes of values (as defined by the calcu-
lus of deviations). It may also be thought of as a limited
theorem prover that provides derivations of the condi-
tions that can lead from an initial state to a hazardous



state. As discussed, this derivation may require adding
software state constraints to the input deviations. The
steps of the derivation are composed using rules of the
calculus (the qualitative functions) and the axioms (the
relations in the causality diagram).

We have applied SDA to several realistic systems. Al-
though more extensive experimentation needs to be per-
formed, the procedure appears to provide information
that is useful for requirements specification and review.
Note that SDA is not intended to replace standard cer-
tification methods such as verification and validation.
However, as an exploratory procedure, it provides im-
portant information to the software analyst.
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