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1 Introduction

Computers are quickly taking over safety-critical
functions in transportation systems. Not sur-
prisingly, we are starting to experience incidents
and accidents related to the software components
in these systems, including a recent recall related
to ABS failure. Software allows unprecedented
complexity and coupling in these systems, and
these factors are stretching our current engineer-
ing techniques for assuring acceptable risk. This
paper summarizes the state of the art in software
system safety and suggests some approaches pos-
sible for the automotive and other industries.

2 Types of Accidents

The reliability engineering and system safety en-
gineering communities differ in their approach
to safety. Whereas reliability engineering con-
centrates on component failure accidents, system
safety deals with a broader class of accidents in-
cluding both component failure and system ac-
cidents, a new type of accident becoming impor-
tant in complex, computer-controlled systems.

2.1 Component-Failure Accidents

The reliability engineering approach to safety
rests on the assumption that accidents are
caused by component failure(s). The obvious
solution, given this assumption, is to increase
the reliability of the components and to build
fault tolerance into the system design to account
for these failures. The approach is very effective
when accidents are primarily caused by compo-
nent failure.

Many industries, in addition to increasing
component reliability, apply a “fly-fix-fly” ap-
proach where accidents are investigated after
they occur and the lessons learned are applied to
modifications of existing systems and to the de-
sign of future ones. In this way, designs are sys-
tematically improved over time. This approach
is effective in industries where designs and tech-
nology are relatively stable over time, but it is
less effective when new types of systems are built
or the introduction of new technology leads to
radically new designs for old systems.

2.2 System Accidents

The introduction of new technology, especially
digital technology and the increasing complexity
of the designs (most of it made possible by the
use of computers) is starting to produce a change
in the nature of accidents. While accidents re-
lated to hardware failure are being reduced, sys-
tem accidents are increasing in importance.

System accidents arise in the interactions
among components (electromechanical, digital,
and human) rather than the failure of individual
components [Per84]. For example, recently the
FAA issued an aircraft AD or advisory directive
(similar to a recall in the auto industry) that
cited the possibility of a delayed stall warning if
the stall conditions occurred while the flaps were
moving. In this case (as is true for most system
accidents), each component worked according to
its specification, but subtle component interac-
tions at the system level allowed the stall warn-
ing to be delayed.

System accidents are related to interactive
complexity and tight coupling. The underly-
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ing factor is intellectual manageability. A “sim-
ple” system has a small number of unknowns
in its interactions within the system and with
its environment. A system becomes complex
or intellectually unmanageable when the level of
interactions reaches the point where they can-
not be thoroughly planned, understood, antic-
ipated, and guarded against. Introducing new
technology increases the problems by introduc-
ing more unknowns into the design, and, in the
case of digital technology, potentially more inter-
actions. System accidents arise when interactive
complexity reaches the point where it is difficult
for designers to consider all the potential system
states or for human operators to handle all nor-
mal and abnormal situations and disturbances
safely and effectively.

The second factor in system accidents, tight
coupling, allows disturbances in one part of a
system to spread quickly to other parts. We are
using computers to build systems with more in-
tegrated, multi-loop control of large numbers of
dynamically interacting components. When al-
most any part of a system can potentially af-
fect any other part, the problems of predicting
and controlling those interactions quickly over-
whelms our current engineering techniques and
mental abilities.

As the interactive complexity and coupling in
our system designs has increased, so too have
system accidents.

3 The Role of Software in Ac-
cidents

The increasing use of software is closely related
to the increasing occurrence of system accidents.
Software usually controls the interactions among
components and allows almost unlimited com-
plexity in component interactions and coupling
compared to the physical constraints imposed by
the mechanical linkages replaced by computers.
The constraints on complexity imposed by na-
ture in physical systems do not exist for software
and must be imposed by humans on their design
and development process.

Indeed, computers are being introduced into

the design of virtually every system primarily
to overcome the physical constraints of elec-
tromechanical components. The problem is that
we have difficulty reining in our enthusiasm for
building increasingly complex and coupled sys-
tems. Without physical constraints, there is no
simple way to determine the point where com-
plexity starts to become unmanageable.

This feature of software might be called the
“curse of flexibility”: It is as easy—and prob-
ably easier—to build complex software designs
as it is to build simple, clean designs. And it
is difficult to determine the line where adding
functionality or design complexity makes it im-
possible to have high confidence in software cor-
rectness. The enormous state spaces of digital
systems means that only a small part can be ex-
ercised before the system is put into operational
use; thus the confidence traditionally obtained
through testing is severely limited. In addition,
humans are not very good at self-imposed dis-
cipline (versus the discipline imposed by nature
in physical systems): “And they looked upon the
software, and saw that it was good. But they just
had to add this one other feature ...” [McC92].

Computers are also introducing new types of
failure modes that cannot be handled by tra-
ditional approaches to designing for reliability
and safety (such as redundancy) and by standard
analysis techniques (such as FMEA). These tech-
niques work best for failures caused by random,
wear-out phenomena and for accidents arising in
the individual system components rather than in
their interactions.

We are even witnessing new types of human
errors when interacting with or within highly-
automated systems. Although many of the ac-
cidents in high-tech systems such as aircraft are
being blamed on the pilots or controllers, the
truth is that these systems are often designed
in such a way that they are inducing new types
of human behavior and human error: The prob-
lems are not simply in the human but in the
system design. A recent report on pilot errors in
high-tech aircraft describes some of these system
design problems [BAS98] as have others, e.g.,
[Lev95, LRK97, SWB95]. The situation is even
more serious and potentially difficult to solve in

2



the auto industry where drivers are not highly
trained and carefully selected as are commercial
pilots.

Using the traditional approach to safety, we
would simply try to increase the reliability of
the software and introduce software fault toler-
ance techniques. Unfortunately, this approach
will not work for software because accidents re-
lated to software are almost never related to soft-
ware unreliability or failure of the software to
satisfy its specification [Lev95, Lut92]. Rather,
these accidents involve software that correctly
implements the specified behavior but a mis-
understanding exists about what that behavior
should be. Software-related accidents are usu-
ally related to flawed software requirements—not
coding errors or software design problems.

In the past two decades, almost all software-
related accidents can be traced to flawed require-
ments in the form of (1) incomplete or wrong as-
sumptions about the operation of the controlled
system or required operation of the computer
or (2) unhandled control-system states and envi-
ronmental conditions. For example, an aircraft
weapons management system was designed to
keep the load even and the plane flying level by
balancing the dispersal of weapons and empty
fuel tanks. Even if the plane was flying upside
down, the computer would still drop a bomb or a
fuel tank, which then dented the wing and rolled
off. In an F-16 accident, an aircraft was dam-
aged when the computer raised the landing gear
in response to a test pilot’s command while the
aircraft was on the runway (the software should
have had a weight-on-wheels check). One F-18
was lost when the aircraft got into an attitude
that the software was not programmed to han-
dle. Another F-18 crashed when a mechanical
failure caused the inputs to the computer to ar-
rive faster than was expected, and the software
was not designed to handle that load or to fail
gracefully if the original load assumption was
not satisfied. Accidents in the most highly au-
tomated commercial aircraft, the A320, have all
been blamed on pilot error, but an even stronger
argument can be made that the design of the au-
tomation was the primary culprit and induced
the human errors.

Merely assuring that the software satisfies its
requirements specification or attempting to make
it more reliable will not make it safer when the
primary cause of software-related accidents is
flawed requirements specifications. In particu-
lar, software may be highly reliable and correct
and still be unsafe when:

• The software correctly implements its re-
quirements but the specified behavior is un-
safe from a system perspective;

• The requirements do not specify some par-
ticular behavior required for the safety of
the system (i.e., the requirements are incom-
plete); or

• The software has unintended (and unsafe)
behavior beyond what is specified in the re-
quirements.

As noted, almost all accidents related to software
have involved one of these requirements flaws.
Ensuring that the software satisfies its require-
ments will not prevent these accidents.

In periods of rapid technology infusion (as
the automotive industry is now experiencing in
the form of new digital technology) and new or
rapidly changing design, the fly-fix-fly and reli-
ability engineering approaches need to be aug-
mented with techniques that predict and ame-
liorate both traditional accident causes related
to the use of new technology and new accidents
causes created by the new technology.

One possible way forward is the use of system
safety engineering techniques, which were devel-
oped to deal with system accidents in complex
defense systems. But even these system engi-
neering techniques will need to be extended to
deal with the new levels of complexity, new types
of failure modes, and new types of problems aris-
ing in the interactions between components in
our new system designs.

4 System and Software Safety

System Safety as a discipline stems from
safety concerns about the first ICBM (Inter-
Continental Ballistic Missile) systems in the
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1950’s. Although great emphasis in engineering
these systems was on safety (as they carry nu-
clear weapons and are highly explosive and dan-
gerous in themselves), an unacceptable level of
accidents and incidents resulted. The lack of pi-
lots meant human operators could not be blamed
for the accidents, as had been standard practice
for military aircraft accidents. The root cause of
the ICBM safety problems stemmed from the un-
precedented complexity in these systems and the
integration of new, advanced technology. System
safety engineering was developed to cope with
these new factors and was part of the related
emergence of system engineering as an identified
engineering discipline at the same time.

System safety involves applying special man-
agement, hazard analysis, and design approaches
to prevent accidents in complex systems. It is
a planned, disciplined, and systematic approach
to preventing or reducing accidents throughout
the life cycle of a system. Rather than relying
only on learning from past accidents or increas-
ing component integrity or reliability, an attempt
is made to predict accidents before they occur
and to build safety into the system and compo-
nent designs by eliminating or preventing haz-
ardous system states.

The primary concern in system safety is the
management of hazards. A hazard is a system
state that will lead to an accident given certain
environmental conditions beyond the control of
the system designer. An uncommanded behavior
of an automobile steering system, for example,
may or may not lead to an accident, depending
on the conditions under which it occurs and the
skill of the driver. However, if worst case envi-
ronmental conditions could occur, then eliminat-
ing or controlling the hazard will increase safety.

In system safety engineering, as defined in Mil-
Std-882, hazards are systematically identified,
evaluated, eliminated, and controlled through
hazard analysis techniques, special design tech-
niques, and a focused management process. In
this approach to safety, hazard analysis and con-
trol is a continuous, iterative process through-
out system development and use. Starting in the
earliest concept development stage, system haz-
ards are identified and prioritized by a process

known as Preliminary Hazard Analysis (PHA).
Safety-related system requirements and design
constraints are derived from these identified haz-
ards.

During system design, system hazard analy-
sis (SHA) is applied to the design alternatives
(1) to determine if and how the system can get
into hazardous states, (2) to eliminate hazards
from the system design, if possible, or to control
the hazards through the design if they cannot be
eliminated, and (3) to identify and resolve con-
flicts between design goals and the safety-related
design constraints.

The difference between this approach and
standard reliability engineering approaches is
that consideration of safety at the system design
stage goes beyond component failure; the analy-
sis also considers the role in reaching hazardous
system states played by components operating
without failure. SHA considers the system as
a whole and identifies how possible interactions
among subsystems and components (including
humans) as well as the normal and degraded op-
eration of the subsystems and components can
contribute to system hazards. For example, not
only would the effect of normal and degraded or
incorrect operation of the steering subsystem of
an automobile be considered, but also potential
hazard-producing interactions with other com-
ponents such as the braking subsystem.

If hazards cannot be eliminated or controlled
satisfactorily in the overall system design, then
they must be controlled at the subsystem or
component level. In subsystem hazard analy-
sis (SSHA). the allocated subsystem functional-
ity is examined to determine how normal perfor-
mance, operational degradation, functional fail-
ure, unintended function, and inadvertent func-
tion (proper function but at the wrong time or
in the wrong order) could contribute to system
hazards. Subsystems and components are then
designed to eliminate or control the identified
hazardous behavior.

The results of system and subsystem haz-
ard analysis are also used in verifying the
safety of the constructed system and in evaluat-
ing proposed changes and operational feedback
throughout the life of the system.
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While this system safety approach has proven
to be extremely effective in reducing accidents
in complex systems, changes are required for the
new software-intensive systems we are now build-
ing.

5 The Safeware Methodology

The Safeware methodology extends the basic
system safety engineering process to handle dig-
ital components and subsystems [Lev95]. In this
approach to building safety-critical systems, in-
stead of simply trying to get the software correct
and assuming that will ensure system safety, at-
tention is focused on eliminating or controlling
the specific software behaviors that could lead
to accidents. Potentially hazardous software be-
havior is identified in the system and subsystem
hazard analyses. The information derived from
these analyses is used to ensure that (1) the soft-
ware requirements are complete and specify only
safe behavior and (2) the entire software devel-
opment and maintenance process eliminates or
reduces the possibility of the unsafe behavior.

The software safety activities in this method-
ology are all integrated into and a subset of the
overall system safety activities. Emphasis is on
building required system safety properties into
the design from the beginning rather than relying
on assessment later in the development process
when effective response is limited and costly.

Building safety into software requires changes
to the entire software life cycle:

• Project Management: Special project
management structures must be estab-
lished, including assigning responsibility for
software safety and incorporating it into the
software development process. The Soft-
ware Safety Engineer(s) will interact with
both the software developers and maintain-
ers and with the system engineers responsi-
ble for safety at the system level.

• Software Hazard Analysis: Software
hazard analysis is a form of subsystem haz-
ard analysis used to identify safety-critical
software behavior, i.e., how the software

could contribute to system hazards. The in-
formation derived from this process, along
with the system safety design constraints
and information from the system hazard
analysis, is used to: (a) develop software
safety design constraints, (b) identify spe-
cific software safety requirements, (c) de-
vise software and system safety test plans
and testing requirements, (d) trace safety-
related requirements to code, (e) design and
analyze the human–computer interface, (f)
evaluate whether potential changes to the
software could affect safety, and (g) de-
velop safety-related information for opera-
tions, maintenance, and training manuals.

• Software Requirements Specification
and Analysis: Because software require-
ments flaws, and in particular, incomplete-
ness, are so important with respect to soft-
ware safety, it is critical that blackbox soft-
ware requirements (required functionality,
including performance) be validated with
respect to enforcing system safety design
constraints and to satisfying completeness
criteria.

• Software Design and Analysis: The
software design must reflect system safety
design contraints (1) by eliminating or con-
trolling software behavior that has been
identified as potentially hazardous and (2)
by enforcing system safety design con-
straints on the behavior and interactions
among the components being controlled by
the software. Note that even if the speci-
fied software behavior is safe, simply imple-
menting the requirements correctly is not
enough—the software can do more than is
specified in the requirements, i.e., there is a
potential problem with unintended software
function or behavior in addition to specified
behavior.

• Design and Analysis of Human–
Machine Interaction: System hazards
and safety-related design constraints must
be reflected in the design of human–machine
interaction and interfaces. The software be-
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havior must not induce human error and
should reduce it when possible.

• Software Verification: The software de-
sign and implementation must be verified to
meet the software safety design constraints
and safety-related functional and perfor-
mance requirements.

• Feedback from Operational Experi-
ence: Feedback sources must be established
and operational experience used to ensure
both that (1) the analysis and design were
effective in eliminating software-related haz-
ards and (2) changes in the environment or
use of the system have not degraded safety
over time. The assumptions of the system
and software hazard analysis can be used as
preconditions on and metrics for the opera-
tional use of the system.

• Change Control and Analysis: All
changes to the software must be evaluated
for their potential effect on safety. Usu-
ally, someone responsible for safety will sit
on the software configuration control board.
Changes must also be reflected in updates
to all safety-related documentation.

The actual implementation of the Safeware
methodology within a particular company or
project should be optimized for that particular
environment and product characteristics. One
process model will not fit all situations. Some
sample tasks that might be included in such a
tailored process are:

• Trace identified system hazards to the soft-
ware interface.

• Translate identified software-related hazard
into requirements and constraints on soft-
ware behavior.

• Analyze software requirements for com-
pleteness with respect to safety-related cri-
teria.

• Develop a software hazard tracking system.

• Incorporate safety into the configuration
control system including the decision-
making process.

• Design the software to eliminate or control
hazards. Trace safety-related requirements
and constraints to the code.

• Review all test results for safety issues and
trace identified hazards back to the system
level.

• Plan and perform software safety testing
and formal or informal walkthroughs or
analysis for compliance with safety require-
ments and constraints.

• Perform special safety analysis on human–
machine interaction and interfaces and on
any special safety-related architectural fea-
tures such as separation of critical and non-
critical software functions.

• Include safety information and design ratio-
nale in software design documentation, user
manuals, maintenance manuals, etc. and
update it as changes are made.

Although it might appear that these added
tasks will substantially increase the cost of pro-
ducing software, increased overall software and
system development costs do not necessarily fol-
low from use of the Safeware methodology. At
least half the resources in software development
today are devoted to testing. For safety-critical
systems, much of this testing is used to build con-
fidence that the software is safe. Unfortunately,
the confidence that can be achieved this way is
limited—we are able to test only a small frac-
tion of the enormous state space of most digital
systems (or combined digital–analog systems)1.

The Safeware approach provides a way out of
this dilemma by potentially reducing (but not
eliminating) the testing needed to provide the
same or even increased levels of confidence. In
addition, automated tools can be used to assist

1As an example, our model of the collision avoidance
logic in TCAS II, an airborne collision avoidance system
required on virtually all commercial aircraft in the U.S.,
has approximately 1040 states.
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the system engineer and software engineer in per-
forming the additional tasks.

6 The SpecTRM Toolset

The Safeware methodology can be integrated
into any system and software development en-
vironment. But the complexity of the systems
we are building often necessitates the use of spe-
cial tools to assist designers and the integration
of these tools into the system and software de-
velopment environment.

For the past 20 years, my students and I have
been experimenting with techniques and tools to
implement the Safeware approach. Our safety
and requirements analysis techniques, along with
new specification languages and tools, are part
of an experimental design and development en-
vironment called SpecTRM (Specification Tools
and Requirements Methodology) [LR98]. The
goal of SpecTRM is to support the design, imple-
mentation, and maintenance (evolution) of com-
plex, safety-critical systems. SpecTRM is a gen-
eral system and software engineering develop-
ment environment with safety and hazard anal-
ysis processes and information tightly integrated
into the process and engineering environment in
which safety-related decisions are made.

The system specifications in SpecTRM, called
intent specifications, use a new way of structur-
ing specifications based on fundamental research
in human problem solving [Lev99]. Intent speci-
fications include complete traceability from high-
level requirements and hazard analyses to code.
The support for traceability from hazard analy-
sis to design and implementation is valuable in
both designing safety into the system and ensur-
ing that safety is not compromised during oper-
ational use and system evolution.

Intent specifications can be analyzed for safety,
both formally and informally. This analysis
does not require separate modeling languages or
models—the appropriate parts of intent specifi-
cations (i.e., the required blackbox behavior of
the components, including components imple-
mented in software) are executable and usable
for both formal analysis and simulation (includ-

ing hardware-in-the-loop simulation).
Because the specifications are executable and

can serve as rapid prototypes, most of the prob-
lems that plague traditional code-based proto-
typing disappear. The specification is always
consistent with the functionality of the prototype
because it is the prototype. Once the design has
been completed, the validated executable specifi-
cation can be used for generating the real system.
In addition, because the executable specification
is based on an underlying formal state-machine
model, at any time the dynamic evaluation (ex-
ecution or simulation of the specified behavior)
can be augmented with formal analysis. The lan-
guage used to specify blackbox requirements in
intent specifications, SpecTRM-RL (SpecTRM
Requirements Language), was designed to be
easily used by engineers without extensive train-
ing in programming or obscure mathematical no-
tations [LHR99].

In addition to the specification languages and
tools, various types of analysis tools are or will
be included in SpecTRM to assist the system
designer including visualization and simulation
tools, hazard analysis tools, robustness and fault
tolerance analysis tools, requirements analysis
tools (including support for completeness analy-
sis), human-error analysis tools (to detect design
features that may contribute to mode confusion
and other errors related to situation awareness),
automated generated of test data from the re-
quirements specification, code generation from
SpecTRM-RL specifications, and training tools
for system operators.

Such support will be necessary if we are to
stretch the limits of intellectual manageability
and complexity in the safety-critical systems we
build.

7 Conclusions

The automotive industry is quickly increasing
the complexity and coupling in their new vehicle
designs. This complexity is starting to outstrip
our ability to provide high confidence that un-
expected interactions between components will
not lead to accidents. Software and digital sys-
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tems provide great challenges as exhaustive test-
ing and standard approaches to high component
reliability are infeasible and ineffective in reduc-
ing risk.

Other industries have found that almost all
software-related accidents are related to errors
in the requirements, not coding errors or soft-
ware “failure.” The problems really relate to
system engineering and the role that computers
are playing within the system as a whole and,
therefore, system engineering solutions will be
required. To build increasingly complex systems
with acceptable risk using software components,
we will need to introduce new approaches to both
system and software engineering and to project
management. This paper has suggested some
forms these changes might take.
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