Integrated Safety Analysis of Requirements Specifications

*

Francesmary Modugno, Nancy G. Leveson, Jon D. Reese
Kurt Partridge, and Sean D. Sandys

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

Abstract

This paper describes an integrated approach to
safety analysis of software requirements and demon-
strates the feasibility and utility of applying the indi-
vidual techniques and the integrated approach on the
requirements specification of a guidance system for
a high-speed civil transport being developed at NASA
Ames. FEach analysis found different types of errors in
the specification; thus together the techniques provided
a more comprehensive safety analysis than any indi-
vidual technique. We also discovered that the more the
analyst knew about the application and the model, the
more successful they were in finding errors. Our find-
ings imply that the most effective safety-analysis tools
will assist rather than replace the analyst.

Keywords: software safety, software safety analysis,
software requirements specification.

Introduction

Although there are well-established techniques and
procedures for analyzing electro-mechanical systems
for safety, only relatively recently have researchers be-
gun to develop similar techniques for software or for
systems that contain software. The long-term goal of
our research is to provide system developers with com-
prehensive support for software-safety analysis. To ac-
complish this, we must do more than simply propose
techniques and demonstrate them on small examples,
we also need to demonstrate the feasibility of applying
them to realistic systems and to demonstrate their ef-
fectiveness. We can then apply what we have learned
to improve the methods and tools, determine whether

*This paper will appear in the proceedings of the 3rd Int.
Symposium on Requirements Engineering, Annapolis, Mary-
land, January 1997. The research described has been partly
funded by NASA/Langley Grant NAG-1-1495, NSF Grant
CCR-9396181, and the California PATH Program of the Uni-
versity of California.

they can be effectively applied by others, and learn
how to make them more usable by system developers.
Leveson and colleagues have been developing a se-
ries of techniques and tools to analyze safety-critical
software [2, 8, 9, 10, 12]. We have demonstrated the
techniques and shown that each can be effective indi-
vidually for the analysis of safety-critical systems. For
example, Heimdahl [2] found several sources of danger-
ous incompleteness and nondeterminism in the speci-
fication of TCAS II (Traffic Alert and Collision Avoid-
ance System), an airborne collision avoidance system
required on all U.W. aircraft carrying more than 30
passengers. To explore the feasibility of automated
analysis, we also applied some prototype tools to an
automated highway system model [14]. We did not,
however, study the interaction between the analysis
results nor did we study the analysis process itself.
To our knowledge, there has been no effort to ap-
ply all these techniques in an integrated safety analysis
of a system or to compare the results of using differ-
ent hazard analysis techniques on the same require-
ments specification. Moreover, there is little informa-
tion on the analysis process itself. In this paper, we
explore the feasibility of such a comprehensive safety
analysis on a specification of a guidance system for a
high-speed civil transport being developed at NASA
Ames [5]. The goal of this case study was to deter-
mine the feasibility of performing such analyses and
to evaluate the techniques and their contribution to
the safety-analysis process. For example, we were in-
terested in seeing how the results of the individual
analyses interacted—what type of information each
analysis provided and how that information comple-
mented, was different from, or was supported by the
results of the other analyses. We were also interested
in learning about the analysis process: how difficult
the techniques were to learn and apply, what prob-
lems we would encounter when learning and applying
the techniques as a group, how difficult it would be to

interpret the results and integrate them, etc.

This paper reports the results of this empirical eval-
uation. First we provide a brief description of the
guidance system. The model is much too large to in-
clude more than just a brief overview in this paper (the
entire model is over a hundred pages long). More in-
formation about the specification can be found in the
appendix. The main body of the paper presents an
overview of software-safety analysis and the results of
the analyses. We conclude with a discussion of our re-
sults and experiences along with planned future work.

The Guidance System

Figure 1 shows an overview of the Vehicle Manage-
ment System (VMS) for a high-speed civil transport
being developed at NASA Ames [5]. The VMS as-
sists the pilot with tasks such as on-board flight plan-
ning, navigation, guidance and flight control. From
the flight-path information received from the Air Traf-
fic Controller, the Translator computes the Reference
Flight Path (RFP), which completely specifies the air-
craft’s planned trajectory in space (i.e., its desired
altitude, velocity, and flightpath angle, which is the
number of degrees from the horizon in an earth ref-
erence frame) along with information such as the flap
and gear extension control points, top of descent point
and distance to next way point.

During automatic flight, the guidance system com-
pares the aircraft’s actual trajectory (as determined
by sensor inputs) with the planned RFP trajectory
and generates both lateral and vertical motion flight-
control commands to null trajectory errors. These
commands are sent to the Flight Control, which di-
rectly executes them, producing a change in the air-
craft’s velocity, altitude, or flightpath angle. During
manual flight, the pilot can directly issue commands
to the Flight Control in order to produce the desired
effect.

The guidance system can also be operated jointly
by the underlying computer and the pilot. In this
mode, the pilot can define the reference flight path by
entering the desired altitude, velocity and flightpath
angle into the Mode Control Panel (MCP) and can
select the operational mode of the guidance system by
depressing the appropriate mode buttons on the MCP.

During both automatic and joint flight modes, the
guidance system selects its operational mode based on
(1) the pilot’s selections from the Mode Control Panel,
(2) the aircraft’s position and velocity relative to the
desired trajectory, and (3) the previous operational
mode. Using this information, it computes the de-
sired flight control commands, which include the com-

manded flight path angle and the commanded thrust.
The guidance system specification is described briefly
in the appendix.

Types of Safety Analyses

A safe system is one that is free from accidents or
unacceptable losses [9]. The heart of analyzing a sys-
tem from a safety perspective is identifying and an-
alyzing the system for hazards, which are states or
conditions of the system that combined with some en-
vironmental conditions can lead to an accident or loss
event [9]. Once the hazards are identified, steps can
be taken to eliminate them, reduce the likelihood of
their occurring, or mitigate their effects on the system.
In addition, some hazard causes can be identified and
eliminated or controlled. Although it is usually im-
possible to anticipate all potential causes of hazards,
obtaining more information about them usually allows
greater protection to be provided.

A hazard analysis requires some type of model of
the system, which may be an informal model in the
mind of the analyst, a written informal or format-
ted specification of the system, or a formal mathe-
matical model. Different models allow for different
types of analyses and for additional rigor and com-
pleteness in the analysis. For the system evaluated
in this paper, we use a state-machine model of the
system’s required black-box behavior. We model the
requirements instead of an actual software design be-
cause many accidents involving software systems can
be traced to requirements flaws [13]. In addition, by
modeling and analyzing the requirements, we can find
problems early in the development cycle when they
are more easily and effectively addressed.

A fundamental tenet of linear control theory is that
every controller is or contains a model of the con-
trolled process. In our specification language, this
model describes how the controller will behave with
respect to various state changes in the controlled pro-
cess. It is also used to determine the current process
state given the previous state and new sensor measure-
ments (readings) of various process variables. Because
a model is an abstraction, it is necessarily incomplete.

Hazards and accidents can result from mismatches
between the software view of the process and the ac-
tual state of the process—that is, the model of the pro-
cess used by the software gets out of synch with the
real process. This mismatch may occur because the
internal model is incorrect or incomplete with respect
to important properties or the computer does not have
accurate information about the process state.

Safety then depends on the completeness and ac-

clearance

Air Traffic
Control

]

flight
plan

velocity vector

MCP [~
arsp

. track anglerate
flight angle rate, sideslip

Autothrottle

—
operational mode L

heading, dtitude ~———
eed

—

—| Flight C

velocity
vector

Landing Gear
commands
engine Engine Controls
control

commands

Figure 1: Overview of the Vehicle Management System for a high-speed civil transport being developed at NASA
Ames. At the center is the guidance system, which automatically controls the aircraft’s flight.

curacy of the software’s model of the process. A
state-machine specification of system or software re-
quirements explicitly describes this model and the re-
quired behavior of the software. A goal of software-
safety analysis is to ensure that the model of the con-
trolled process (i.e., the requirements specification) is
sufficiently complete that it specifies safe behavior in
all circumstances in which the system will operate.
Jaffe [7, 8, 9] has defined general criteria for determin-
ing whether such models satisfy this goal. The results
of applying these criteria to our specification are de-
scribed below.

The specification (model) can also be analyzed with
respect to specific, known hazards. We accomplish
this goal using what we call State Machine Hazard
Analysis (SHMA) [9]. SMHA, like most safety anal-
yses, involves some type of search. How that search
is performed depends on the structure of the model
and the goal of the search. One classification for such
search techniques is forward or backward [9].

A forward (sometimes called inductive) search takes
an initiating event (or condition) and traces it forward
in time. The result is a set of states or conditions
that represent the effects of the initiating event. An
example of such a search is determining how the loss
of a particular control surface will affect the flight of
an aircraft.

Tracing an event forward can generate a large num-
ber of states, and the problem of identifying all reach-
able states from an initial state may be unsolvable

using a reasonable set of resources. For this reason,
forward analysis is often limited to only a small set of
temporally ordered events.

In a backward (also called deductive) search, the an-
alyst starts with a final event or state and identifies the
preceding events or states. This type of search can be
likened to Sherlock Holmes reconstructing the events
that led up to a crime. Backward search approaches
are useful in accident investigations and also in elim-
inating or controlling hazards during system develop-
ment by, in essence, investigating potential accidents
before they occur.

The results of forward and backward searches are
not necessarily the same. Tracing an initial event for-
ward will most likely result in multiple final states, not
all of which represent hazards or accidents. Because
most accidents are caused by multiple events, to be
fully effective the forward analysis must include more
than a single initiating event. Combinatorial explo-
sion usually makes an exhaustive search of this type
impractical and limits the number of initiating events
that can be considered. The advantage of this type of
search is that hazards that have not previously been
identified can theoretically be found.

Tracing backward from a particular hazard or ac-
cident to its preceeding states or events may uncover
multiple initiating or contributing events, but the haz-
ards usally must be known. System engineers are quite
effective in identifying system hazards, of which there
are usually a limited number. Finding all the causes

of such hazards is a much more difficult problem. It
is easy to see that if the goal is to explore the precur-
sors of a specific hazard or accident, the most efficient
method is a backward search procedure. On the other
hand, if the goal is to determine the effects of a specific
event, a forward search is most efficient.

In this case study, we performed both forward anal-
yses (simulation and deviation analysis) and a back-
ward analysis (fault tree analysis), as described below.

Analyzing the Guidance System Model

Errors were found when constructing the model,
checking the consistency and completeness criteria,
and performing the forward and backward analyses.
We note that the NASA guidance system specifica-
tions we used are in the research stage and still under
development. The fact that we found errors or poten-
tial hazardous states reflects only on the preliminary
nature of the specification.

Knowing the backgrounds of the modelers and an-
alysts is helpful in interpreting the results. Modugno,
who did the bulk of the model construction as well as
overseeing the analyses and synthesizing the results, is
a computer scientist with no physics training. Within
computer science, her background is human—computer
interaction and only recently has she begun to work
in software safety. Reese is trained as a computer sci-
entist and created one of the forward analysis meth-
ods [15]. Sandys and Partridge are Ph.D. students in
computer science, studying software safety. In addi-
tion, Sandys holds a bachelor’s degree in physics and
helped construct the parts of the model that required
physics knowledge. Finally, Leveson has been working
in the area of safety for 15 years. She helped with the
initial stages of model development although she did
not help perform analyses in order to determine how
well they could be done without her expertise.

The original guidance system specification was
written by a NASA expert in aircraft control and guid-
ance systems. He has a Ph.D. in physics, is a licensed
pilot, and has been working in this area for over 30
years. We interacted with him while constructing the
model, and he provided some support during the anal-
yses, especially in determining appropriate environ-
mental data to use in the formal simulation of the
model. The next sections describe the errors found
during model construction and analysis.

Errors Found While Constructing the
Model

The specification was developed using three dif-
ferent documents provided by the NASA Ames re-

searchers: 1) a description of the overall goals of the
guidance system design along with a description of
the vertical operation modes using a combination of
English, Laplace diagrams and state machines; 2) a
Jackson Charts [6] specification of the vertical opera-
tion modes; and 3) pseudo-code used to create a pro-
gram to control a vertical motion simulator for pilot
testing of the guidance system.

In the process of constructing the model, we found
errors in the original guidance system specification.
Discovering these errors points to the utility of going
through the process of developing a model of specifi-
cations as well as to the utility of the model itself. We
note again, however, that these documents are still in
development so many of the errors we found might
have been found in a later stage by the developers.

For example, we found a line in the pseudo-code in
which the system transitioned to one state but illu-
minated a different button on the display. This error
was probably due to quick editing on a word processor
when writing the pseudo-code (i.e., copying a portion
of the code and editing it incorrectly). Nonetheless,
a programmer might not notice the error. Indeed, we
might not have noticed it either had our modeling lan-
guage not forced us to think about the relationship be-
tween the computer logic and the display information;
that is, the form of our model caused us to think about
the requirements specification in a particular way.

As a more serious example, we found places in the
pseudo-code in which the system prompted the pilot
for a particular data value when in fact another value
was required by the guidance system logic. Again, we
discovered this error because, when constructing the
model, we had to trace the flow of the pilot’s inputs
through to the computer logic.

We also found several omissions in the NASA spec-
ification when constructing the model. For example,
nowhere in the documents did it say how often the in-
puts would arrive. We obtained this information from
conversations with the designer as we were construct-
ing the model and attempting to understand the logic
of the guidance system. The notations used for the
original NASA specifications did not require this in-
formation to be included.

Note that these errors were not necessarily
found because of any mathematical notation in our
language—in fact, many in the formal methods com-
munity would not consider our language to be “for-
mal.” We believe that we found these errors in trans-
lating from the Jackson Charts and pseudo-code into
our modeling language (called Requirements State
Machine Language or RSML) mainly because the pro-

cess required that we consider how to represent each
Jackson Chart action or line of pseudo-code in RSML
and then determine where it fit into our model. The
type of thinking and analysis required to construct a
state-machine model provides a basis for uncovering
some types of requirements errors. The same type of
benefit may be found using other modeling techniques,
but will depend upon the modeling methodology and
language and is not automatically a property of all
models.

In summary, the form of our RSML model (i.e.,
the state decomposition we decided on), the process of
constructing the model from the various informal spec-
ifications provided by the NASA Ames researchers,
and the resulting structured model helped us to dis-
cover errors in the specification.

Completeness and Consistency Checks

Jaffe and colleagues [8, 9] have defined a set of for-
mal criteria to identify missing, incorrect, and ambigu-
ous requirements for process-control systems. Briefly
and informally, the criteria ensure (1) completeness of
transitions and default values during normal and non-
normal operation, including startup and shutdown;
(2) complete specification of all inputs and outputs;
(3) complete specification of the interaction between
the computer and the operator; (4) complete descrip-
tion and handling of all inputs including essential
value and timing assumptions about these inputs; (5)
complete specification of the output conditions with
respect to timing and value, including environmen-
tal capacity, data age, and latency requirements; (6)
complete specification of the relationship between in-
puts and outputs, including feedback loops and grace-
ful degradation; (7) and complete specification of the
paths between states with respect to desirable proper-
ties such as basic reachability, recurrent or cyclic be-
havior, reversible behavior, reachability of safe states,
preemption of transactions, path robustness, and con-
sistency with required system-level constraints.

Analyzing a specification in terms of these criteria
depends on the form of the specification (its size, lan-
guage, etc.). In some cases the criteria can be enforced
by the syntax of the specification language, while in
other cases, the criteria can be checked by manual in-
spection or with the assistance of automated tools.
For example, Heimdahl [2] has automated the check-
ing of RSML specifications for two of the 47 criteria,
i.e., those to ensure robustness and nondeterminism.
Heitmeyer and colleagues [3] provide tools similar to
Heimdahl’s to check for the internal consistency of
specifications in SCR [4], a state-based specification

language that uses an assortment of tabular notations
to define state transitions.

Without realizing it, Modugno had begun to do
some of these checks informally when constructing the
model and later when examining the completed model.
The syntax of the modeling language is designed to
make some omissions obvious. She later realized that
her efforts in examining the model in this way were re-
ally a part of the planned completeness criteria check-
ing. We also found errors relating to completeness by
performing forward simulation and the other hazard
analyses.

Some of the errors that were apparent immediately
from examining the model involved missing transi-
tions. For example, by reviewing the RSML graph-
ical representation of the guidance system, we noted
that several components had states with no transi-
tions between them. Upon further examination, we
discovered there was no detailed specification for these
transitions in the documents. As a specific exam-
ple, once both the Glideslope Lock and Altitude Lock
were set, they were never unset, i.e., in examining the
model we noticed that there was a transition from
the state Glideslope-Lock-Off to Glideslope-Lock-On
and from Altitude-Lock-Off to Altitude-Lock-On, but
there were no transitions in the other direction. This
type of omission is defined by one of our path com-
pleteness criteria, i.e., reversibility.

In addition to missing transitions, examining the
model revealed input not used and missing output.
When constructing the model, we had created an in-
put (output) interface for each input (output) in the
pseudo code. A simple search on each variable name
helped us determine if and how each input was used or
output was produced. Several inputs were never used,
and two output values were never produced.

After completing the model, Modugno manually ex-
amined it for violations of each of the criteria. She be-
lieves that her familiarity with the model (from hav-
ing constructed it) greatly facilitated the analysis. We
have not yet had an avionics expert try to apply the
criteria, but plan to do so soon.

Several omissions were detected during the manual
check of the completeness criteria. For example, the
specification for the Primary Flight Display did not
detail how the displayed geometric figures mapped to
actual data values, how long they were to be displayed
and what triggered them to appear or disappear. Sim-
ilarly, as we noted above, some of the mode annuncia-
tors were missing trigger events. Both these omissions
were found by analyzing the specification using the
human—computer interface criteria.

Several incompletenesses in the state specification
were found, among them uninitialized input variables,
such as measured speed and measured altitude (which
are necessary to model the system during take off),
and unspecified timing intervals between inputs. The
NASA documents did not specify how often the sen-
sors would report their data values nor was there
any specification on how long the system should wait
for the pilot’s input once the prompts appeared, al-
though a timeout was implied in the Jackson Chart
and pseudo-code specifications.

Additionally, we found several states that did not
specify a response to certain inputs while in that state.
For example, if the pilot selects a particular vertical
guidance mode, the system will prompt him or her to
enter the reference speed and altitude. However, there
was no specification of the system behavior if the pilot
then selected another vertical guidance mode without
first entering the requested data.

With respect to robustness, the current NASA
specification for the guidance system contains no
checks for legal ranges or timing values and thus no
behavior is specified for out-of-range input values or
late, early, or missing inputs. Similarly, range and
timing values were missing for flight control command
outputs along with data age limits (the length of time
before input data or output commands are considered
obsolete).

Finally, by examining the relationship between the
outputs and inputs, we discovered that there were no
feedback loops to check on the response of the aircraft
to the generated flight control commands, and thus no
behavior was specified to respond to either expected
input values or unexpected, early, late or missing input
values. These omissions could cause a failure in the
system to go unnoticed.

The NASA guidance system is still under devel-
opment and many of these omissions probably would
have been caught and corrected without our analy-
sis. However, these types of requirements specifica-
tion flaws are common and often persist until late in
development or actual use of the software. For exam-
ple, Lutz found that the Jaffe completeness criteria
covered most of the 192 requirements errors identified
as safety-critical that were not detected until system
integration testing of the Galileo and Voyager space-
craft [13]. We found manual checking of the criteria to
be helpful in finding important specification omissions
and believe that automated tools to assist the analyst
in checking the criteria might detect errors not found
by our manual process.

Forward Simulation

Forward simulation was performed by Modugno
and Sandys. The RSML simulator was used to ex-
ecute several scenarios to observe the states of the
controller given specific inputs. The extensive physics
background of Sandys along with help from a NASA
expert were required to generate reasonable scenarios.
The quality of the results of the simulation will, in
general, be limited by the quality of the test scenar-
ios.

The depth-first search property of forward simula-
tion makes using simulation alone infeasible to detect
reachable hazardous states. If, as is reasonable, haz-
ards are assumed to be infrequent, then the proba-
bility of blindly finding a hazard using this type of
search is low. However, forward simulation can be
useful when used in conjunction with other analysis
methods. For example, we found we could use other
analysis techniques to narrow the search space and
then use forward simulation to investigate the smaller
region.

Despite these limitations, by simply tracing the
transitions forward for individual components, we did
find a hazardous state within the normal operation of
the requirements specification. The state was one in
which the flaps were not DOWN but the plane was in a
landing approach. During landing, the flaps help slow
the plane. In certain instances, the plane could get
“stuck” in this hazardous state, potentially leading to
an accident. The problem arises from an assumption
in the specification that inputs triggering the flap mo-
tion will arrive in a particular order. In particular,
the specification assumes that the information about
the point in space where the pilot is supposed to initi-
ate the flap extension (FLAP-INIT-POINTS) will arrive
before the boolean input indicating that flap exten-
sion can begin. Yet there is no indication of this as-
sumption anywhere in the specification. Specifications
should either clearly state such assumptions, or they
should be written to handle their violation.

Uncovering this assumption revealed another as-
sumption within the FLAPS component—namely that
the FLAP-INIT-POINT input will arrive before the plane
reaches that point in space. Nothing in the specifica-
tion indicates what should happen if the FLAP-INIT-
POINT information arrives after passing it. In fact, a
similar situation may have contributed to the recent
crash of a Boeing 757 in Cali, Columbia. In that acci-
dent, the pilots entered a way point into the guidance
system that the aircraft had already passed. In an at-
tempt to reach that way point, the guidance system
commanded the plane to turn around, causing the air-

craft to crash into a mountain.

These two assumptions are related to some of the
errors revealed by the completeness and consistency
checks. Theoretically, they are covered by the com-
pleteness criteria, but we did not find them during
our manual inspection of the model using the criteria
as a checklist, pointing to the need for better manual
inspection methods or automated assistance to the an-
alyst.

Deviation Analysis

Deviation Analysis is a new type of forward search
technique that takes its inspiration from HAZOP
(HAZards and OPerability analysis), a very successful
analysis procedure used in the chemical process in-
dustry. Both techniques are based on the underlying
system theory concept that accidents are the result of
deviations in system variables.

Deviation analysis takes a formal model of the sys-
tem along with deviations in the system inputs from
their normal or expected values and examines the ef-
fects of these deviations on the system’s behavior. It
can also help identify potential system hazards result-
ing from deviations in system inputs.

To assist the analyst, Reese [15] has developed a
tool for performing a deviation analysis on an RSML
specification. The analyst first selects one or more
inputs to deviate and describes how to deviate them
(high, low, very high, very low, and so on). The ana-
lyst then marks states, functions or outputs for which
a deviation is considered hazardous. The tool pro-
duces a set of scenarios in which the deviated inputs
would produce a deviation in a marked state, function
or output. Each scenario lists assumptions on other
input values that lead to the deviation and what ef-
fect the initial deviations and additional assumptions
have on the affected state, function or output. For
example, an input that is deviated high could cause
the system to enter a hazardous state by, for example,
a function computing a value that is too high or the
software producing an incorrect output.

The deviation analysis was performed by Reese. By
deviating different inputs, he found several potential
hazards in the model. For example, he wanted to de-
termine what effect a too-high measured speed would
have on the commanded flight path angle (recall that
the measured speed is the speed of the aircraft as de-
termined by the sensors, and the commanded flight
path angle is one of the guidance system outputs—
see Figure 1). Using the deviation analysis tool, he
deviated the measured speed “high” and marked the
function that computes the commanded flight path

Controller prompts pilot for speed and altitude

Configuration:
Controller Aircraft-Model Gears : up
Controller Vertical-Modes
High-Level-Mode : NOT minimum-time
MCP-Inputs Reference-Speed : waiting
MCP-Inputs Reference-Altitude : waiting
MCP-Inputs Armed-Speed : waiting
Event:
prompt-for-reference-speed
prompt-for-reference-altitude
prompt-for-armed-speed

Pilot initiates minimum time approach
Configuration:

Controller Aircraft-Model Gears : up
Controller Vertical-Modes

High-Level-Mode : NOT minimum-time
MCP-Inputs : idle

Event: guidance-mode-received-event

Condition:
guidance-mode = minimum-time
time > top-of-descent-time + one-minute

Figure 2: The sequence of events leading to the haz-
ardous state in which the plane is in minimum-time
mode and the landing gear are not deployed is initiated
by the pilot selecting the minimum-time approach but-
ton when the plane is more than one minute away from
the top-of-descent time.

angle. The deviation analysis tool initially produced
five scenarios. Each scenario showed that deviating
the measured speed alone would not cause a deviation
in the commanded flight path angle. However, they
also indicated that the initial deviation, coupled with
one or more other deviations in the input, would cause
the commanded flight path angle to be incorrect.

In performing the deviation analysis, Reese was
limited by his unfamiliarity with the guidance system
model. He was initially unable to determine which
states or functions to mark as important items to an-
alyze when deviating a particular input. Only after
understanding the model in detail was he able to in-
terpret the scenarios output by his tool and use them
to investigate other deviations. His experience sup-
ported our observations thus far of the importance of
application knowledge in performing the analysis.

Backward Search

In backward search, the analysis starts with a haz-
ardous state and builds trees showing the events that
could lead to this state. In order to perform this anal-

ysis, we first had to come up with a list of potentially
hazardous states. Using these configurations, Mod-
ugno then did a backward search, examining the re-
sults for potential hazards under expected and failure
behaviors. She found the process to be labor intensive
and required in-depth understanding of the model. In
addition, the trees grew quickly and the presentation
quickly became unwieldy. This same problem has been
noted with other types of automated analysis applied
to hardware models [1].

As an example, consider the hazard of the land-
ing gear not deploying during a minimum-time ap-
proach landing. The top node of the generated tree
thus represents the case in which the system is in the
minimum-time landing mode and the gears are up.

There are two changes that can lead to this
configuration—a change in the gear position from
DOWN to UP or a change in the vertical mode from
any other mode to minimum time. By analyzing the
state transitions, we determined that the only way the
gears can go from DOWN to UP is if the mode changes
from minimum time to take-off/go-around. Therefore,
the only way the guidance system can get into the haz-
ardous state is when the gears are already up and the
plane enters minimum-time mode. Because there were
a large number of potential paths to the hazardous
state, we used forward simulation to help prune the
number of paths that needed to be considered.

For the guidance system to transition to minimum-
time mode, the pilot must initiate a minimum-time
approach by selecting the minimum-time mode button
on the MCP and then entering the reference speed,
reference altitude, and armed speed into the MCP
within a certain time period. Figure 2 is a portion of
the tree showing the partial configuration of the guid-
ance system that gives rise to this series of events: the
gears are up; the Controller’s high-level vertical mode
is not minimum time; and the MCP Inputs from the
pilot are idle (i.e., no input is expected). The fig-
ure also shows the event and conditions under which
the guidance system can transition out of this con-
figuration. The event that triggers the transition is
a guidance-mode-received-event, which indicates
that the pilot has selected a new vertical guidance
mode. The conditions that must be satisfied for the
transitions to fire are that 1) the selected guidance
mode must be minimum time, and 2) the selection
must be made more than one minute before the top-
of-descent time. If these two conditions are met, then
the guidance system will prompt the pilot to enter the
reference speed, reference altitude and armed speed.

Hence, there is a normal sequence of events that can

lead to the hazardous state. By analyzing the spec-
ification, we found three conditions under which the
system will remain in this hazardous state under nor-
mal operation (which means that the plane will land
without the gears extended). For example, for the
gears to transition from UP to DOWN, the measured
speed must be 250 knots. If that exact speed is never
reported by the sensors, the transition will never oc-
cur. Using this analysis, we were able to change the
conditions under which the gears UP to DOWN transi-
tion occurs to avoid remaining in the hazardous state.
Similar analyses and changes addressed the other haz-
ardous conditions.

Discussion and Conclusions

We have described the results of an empirical eval-
uation of a set of hazard analysis techniques. Several
conclusions follow from our results.

First, these techniques can be applied to real sys-
tems. We were able to build a model of a complex
system and to apply completeness criteria and for-
ward and backward hazard analysis techniques to that
model. We have shown that these techniques work on
more than very small, research-paper examples. In the
process of demonstrating this, we obtained additional
insight into the analysis process, which we will use to
improve the techniques in the future.

Second, the techniques were able to find real er-
rors in the specification. Again, we note this does not
imply anything about the quality of the NASA spec-
ifications. The project developing the guidance sys-
tem is a research project, and we were modeling early
designs for the system. The emphasis in this NASA
project has not been on getting complete specifica-
tions, but rather in examining ways to reduce modes
and hence mode confusion in flight management com-
puters. However, the errors or omissions we found
are typical of those found in real system specifications
and designs, including errors that have been found to
have contributed to accidents in the past. Our goal
was to determine whether our techniques could find
important errors in real systems, and they did.

We also do not want to overstate the results. The
process of carefully reviewing any specification or at-
tempting to understand a system specification well
enough to model it is likely to uncover errors, no mat-
ter what techniques are used. We cannot determine
how effective our techniques are, especially with re-
spect to alternatives, without more careful compar-
isons and perhaps controlled experiments.

Third, we found that the various hazard analysis
techniques provided us with different and complemen-

tary types of information. While checking the com-
pleteness criteria manually, we found some potentially
important omissions in the system specification. In
the automated forward analyses, we detected some
initial states and events that could lead to hazardous
system states. In the backward analyses, we started
with hazardous states and conditions and identified
several possible paths leading to those hazards. All
these types of analysis were useful. The backward
analyses forced us to think about potential hazards
of the system and examine their causes. The forward
analyses forced us to think about potential failures and
examine their effects. Together the analyses provided
us with a more complete safety analysis than any of
them alone provided.

Some of the analysis techniques support other ones.
For example, in the fault tree analysis, taking a step
back from an initial configuration provides a set of pos-
sible previous states. By performing a forward simu-
lation from each of these states, we were able to prune
away those states that cannot really precede the initial
configuration. Similarly, both forward and backward
simulation assisted in the checking of some of the com-
pleteness criteria.

Fourth, the design of the modeling language can
support or hinder the analysis process. We discov-
ered a number of important errors in the NASA docu-
ments simply by constructing the state-machine spec-
ification. We credit this result to the type of thinking
and analysis required when constructing this type of
model.

In addition, we believe this particular representa-
tion facilitated the analysis process; the specification
provided a structure that supported the different tech-
niques. For example, the organization of the model
provided an orderly way to examine the specification
for completeness and consistency errors. Also, the
state abstraction and organization facilitated the fault
tree analysis: Having transitions between states and
the conditions under which those transitions are taken
located together makes tracing the events backwards
through the specification simple. In both the Jackson
Chart specification and the pseudo-code, this infor-
mation is dispersed throughout, making the backward
tracing of events and conditions difficult. For exam-
ple, often the conditions for a particular state change
in the pseudo-code are buried within the conditions
of a group of nested if-then-else statements and
function calls. Tracing these back could be difficult
(and we note, was difficult and error prone; back trac-
ing through function calls and nested if-then-else
statements is how we constructed the model initially).

In addition, the fact that a subtle typographical
error in one specification language translates to an
obvious omission in another language suggests that
analysts can be provided with specification languages
that focus their attention on the places where we have
found that errors are likely to be made. The same can
probably be said of analysis—the form of the analysis
results will most likely affect the ability of analysts to
interpret them with respect to their own application
expertise and knowledge.

A conclusion that might be drawn here is that the
design of a modeling or specification language should
reflect the type of analyses to be performed on it,
i.e., an understanding of the type of analyses desired
should precede language design. In addition, many
if not most errors will be found during expert review
rather than by automated tools, so readability and or-
ganization of the specification to enhance the ability of
the expert to find errors are also important consider-
ations in specification language design. Our modeling
language (RSML) is changing and evolving as we learn
more about the modeling and analysis process.

Finally, we found that using the hazard analysis
techniques requires application expertise, and hence
they are probably best applied by application experts.
When we began this project, none of us had any expe-
rience with guidance systems. In addition, the main
analyst (Modugno) was new to the area of software
safety and had no prior experience with the tech-
niques. Although we found that the techniques were
easy to learn, applying them successfully depended on
an understanding of the application domain. Even
building the model required a detailed understand-
ing of the physics of the plane’s motion. Moreover,
translating from the designer’s notation into RSML
required an understanding of engineering notation not
commonly used in computer science.

Whether application experts can use our modeling
and analysis techniques and will find them useful, how-
ever, is yet to be determined. We have ascertained the
feasibility of performing an integrated safety analysis
and the utility of such an analysis. Our next step is
to determine whether others can use the techniques to
perform an analysis. Then we can begin to determine
what tools we need to develop to support analysts.

Our findings so far suggest that the most effective
safety-analysis tools will assist rather than replace the
analyst. We should therefore focus on building tools
that augment human abilities rather than attempting
to do the analysis completely with tools alone. For ex-
ample, because both the backward and forward analy-
sis techniques require searching through a large space,

tools to help the analyst prune that space and navi-
gate through it could be helpful. Conversely, expert
knowledge of the application allows the analyst to se-
lect the most plausible search paths and to eliminate
immediately scenarios that are physically or logically
impossible in the system being analyzed. We hope to
have a NASA guidance system expert apply our tech-
niques and tools to compare the results obtained in
terms of number and type of problems found. A part-
nership between application, safety, and tool experts
will most likely turn out to be the most effective way
to produce useful results.

We plan to study further the whole issue of tool
design. For example, the type of support that auto-
mated tools and techniques should provide will depend
on an understanding of the cognitive demands of the
particular analysis techniques and an understanding of
how automation can be used to lessen those demands.
Studying the process of how experts learn and use the
analysis techniques should help us gain some of this
understanding, as well as using results of research in
other fields such as cognitive psychology and cognitive
engineering.

We also plan to extend the modeling and analysis
techniques to include ways to model the human oper-
ator and to provide techniques for human-error anal-
yses. As computers have become more sophisticated
and their role in process control has changed from sim-
ply an interface to the process to an autonomous con-
troller, a large number of accidents in safety-critical
systems have been blamed on “human error.” We
need to understand why these errors occur and how
we can prevent them. Modeling the operator and an-
alyzing the entire system—automated controller and
operator—for potential hazards can help us reach this
goal.

Acknowledgments

We would like to thank Charlie Hynes at NASA
Ames for all his help and for providing the NASA
guidance system specifications.

References

[1] P.K. Andow, F.P. Lees, and C.P. Murphy. The
Propagation of Faults in Process Plants: A State
of the Art Review. 7th International Sympo-
sium on Chemical Process Hazards, University of
Manchester, 1980.

[2] M.P.E. Heimdahl and N.G. Leveson. Complete-
ness and Consistency Checking of Software Re-
quirements. In IEEE Transactions on Software
Engineering, vol. 22, no. 6, June 1996.

[4]

[5]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

C.L. Heitmeyer, B.L. Labaw, and K. Kiskis. Con-
sistency checking of SCR-style requirements spec-
ifications. In Proceedings of the International
Symposium on Requirements Engineering, 1995.

K.L. Heninger. Specifying software for com-
plex systems: New techniques and their applica-
tion. IEEE Transactions on Software Engineer-
ing, 6(1):2-13, January 1980.

C. Hynes. An example guidance mode specifica-
tion. Technical report, NASA Ames, 1995.

M.A. Jackson. Principles of Program Design.
Academic Press, 1975.

M.S. Jaffe. Completeness, Robustness, and Safety
of Real-Time Requirements Specification. Ph.D.
Dissertation, UCI, June 1988.

M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, and
B.E. Melhart. Software requirements analysis for
real-time process-control systems. IEEE Trans.
on Software Engineering, 17(3):241-258, 1991.

N.G. Leveson. Safeware: System Safety and
Computers. Addison-Wesley, 1995.

N. Leveson, S. Cha, and T. Shimeall. Safety
verification of ada programs using software fault
trees. IEEE Software, 8(7):48-59, 1991.

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth,
and J.D. Reese. Requirements Specification for
Process-Control Systems. IEEE Transactions on
Software Engineering, 20(9):684-707, 1994.

N.G. Leveson and J.L. Stolzy. Safety analysis us-
ing Petri nets. IEEE Transactions on Software
Engineering, SE-13(3):386-397, 1987.

R. Lutz. Targeting safety-related errors during
software requirements analysis. In Proceedings
of the First ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 1993.

V. Ratan, K. Partridge, J.D. Reese, and N.G.
Leveson. Safety analysis tools for requirements
specifications. Compass 96, Gaithersburg, Mary-
land, June 1996.

J.D. Reese. Software Deviation Analysis. Ph.D.
Dissertation, UCI, 1996.

Appendix: The Guidance System Specifi-
cation

We specified the control behavior of the guidance
system using a parallel state-machine model. The
modeling language is essentially RSML [11], which we
previously developed to specify an aircraft collision-
avoidance system, although the language is evolving
as we gain more experience in modeling real systems
and determine what is required and desirable to build
understandable and analyzable models.

In our modeling language, components are modeled
by parallel state machines. Each state machine is com-
posed of states connected by transitions. Transitions
are triggered by input or by internal events and are
only taken when their guarding condition is true. A
triggered transition produces an output or an internal
event, which can in turn trigger transitions in other
state machines.

In addition to the graphical specification of each
state machine, the RSML model defines the guard-
ing conditions on a transition using a logic table
(AND/OR table). Figure 3 shows an example. The
far-left column of the AND/OR table lists the logical
phrases. Each of the other columns is a conjunction
of those phrases and contains the logical values of the
expressions. The table evaluates to true if one of its
columns is true. A column evaluates to true if all of
its elements are true. A dot denotes “don’t care.”

As shown in Figure 4, the guidance system can
be modeled using three parallel state machines: the
MODE CONTROL PANEL, which models the pilot’s se-
lections on the Mode Control Panel; the DISPLAYS,
which models the state of the displays; and the CON-
TROLLER, which models the software logic.

Controller. The CONTROLLER issues commands to
control the lateral and vertical motion of the plane.
The particular command issued is dependent on the
current CONTROL MODE of the guidance system, which
indicates whether the guidance system is in fully au-
tomatic mode or jointly (pilot and computer) con-
trolled mode, the current LATERAL MODE, the VER-
TICAL MODE, and the controller’s model of the state
of the aircraft.

For space reasons, we describe only the VERTICAL
MODES state machine of the CONTROLLER, which is
used to specify the conditions for issuing flight com-
mands that control the vertical motion of the aircraft
(Figure 5).

The guidance system has four High-Level Modes:

e Minimum Time: engaged to minimize time during

a landing,

e Minimum Fuel: engaged to minimize fuel during
a landing,

e Take 0ff/Go Around: engaged when a landing is
missed, and

e Standby : engaged when no other vertical high-
level mode is active.

These modes control the aircraft via the

Intermediate Modes:

e Altitude: capture and hold a particular altitude,
and

e Glideslope: track and capture the glideslope,
which is a line through space relative to the
ground.

The Intermediate Modes achieve their goals by in-
teracting with the Low-Level Modes, which can be
initiated only by the guidance system (that is, the
pilot cannot directly instruct the guidance system
to enter one of these modes). The three guidance-
system-initiated modes are c1imb, level flight, and
descend.

The appropriate vertical operational mode is de-
termined using inputs from the environment (such as
the Reference Flight Path Table and input from the
sensors) as well as the aircraft model (see Figure 4).
The Aircraft Model includes process state information,
such as the position of the gears and flaps.

Mode Control Panel. The MoODE CONTROL
PANEL, which models pilot inputs to the guidance sys-
tem, is composed of four parallel state machines that
model the control, lateral and vertical mode buttons
that the pilot selects on the MCP, and other input
data. Again for space reasons, we describe only the
vertical mode selections.

There are six buttons on the MCP that the pilot can
select to control the vertical modes of the aircraft, as
described above: minimum-time, minimum-fuel, take
off/go around, standby, altitude, and glideslope .

The first four buttons represent the pilot selection
of a high-level vertical mode, while the last two repre-
sent selection of an intermediate vertical mode.

Displays. The final component of the guidance sys-
tem is the Displays. We model the information on
two of the aircraft displays: the MCP and the Primary
Flight Display. The annunciators on the MCP indi-
cate the current control, lateral and vertical modes.
The Primary Flight Display models the relationship
between current data values, such as current altitude,

Transition: | Not Active| — | Active |

Location: Controller — Vertical-Modes — Intermediate-Mode — Altitude
Trigger Event: MCP-Selection

Condition:

MCP-Selection = Altitude

MCP-Selection = Glideslope
Glideslope-Position IN STATE Below-Glideslope
MCP-Selection = Minimum-Time
MCP-Selection = Minimum-Fuel

Output Action: MCP-Light-Altitude-Button

Figure 3: A definition of the transition from state NOT ACTIVE to state ACTIVE for the ALTITUDE state machine,
which is an INTERMEDIATE MODE within the VERTICAL MODES of the CONTROLLER (see Figure 5). The transition
can take place only when the trigger event MCP-Selection occurs and either the pilot selects the Altitude,
Minimum Time or Minimum Fuel buttons on the Mode Control Panel, or the pilot selects the Glideslope button
on the Mode Control Panel and the plane is below the glideslope. If the transition is taken, the Altitude button
on the MCP is lit.

Guidance System
s N . N N
Mode Control Panel Displays Controller
{ N\ { N\ { N
Control MCP Selections Control MCP Annunciations Control Modes
\. J \. J \ J
a4 N 4 N 4 N
Lateral MCP Selections Lateral MCP Annunciations Lateral Modes
\. J \ J \ J
{ N\ { { N
Vertical MCP Selections Vertical MCP Annunciations Vertical Modes
\. J \. \ J
a4 N 4 a N
MCP Inputs Primary Flight Display Aircraft Model
g J \ \)
_ AN L J

Figure 4: At a high-level of abstraction, the guidance system model consists of three parallel state machines,
which themselves are composed of parallel state machines. The MODE CONTROL PANEL models the operator’s
input to the guidance system, which includes the control, lateral and vertical operating mode selections along
with the MCP inputs such as the reference speed or reference altitude. DISPLAYS models the control, lateral
and vertical modes annunciated on the MCP, and the data values displayed on the Primary Flight Display. The
CONTROLLER models the logic that determines the control, lateral and vertical operating modes of the guidance
system. The control logic is defined using a model of the aircraft along with the controller operating modes.

) Intermediate-Mode
High-Level-Mode

T
[minimum time Altitude

4 .
.. Active
minimum fuel

altitude capture
[take off/go around% ,
(e -

climb or descend

{

.

Low-Level-Mode

p
Glideslope

(Active

- glideslope

level flight capture

glideslope Not Active
track

climb or descend

Figure 5: The VERTICAL MODES state machine of the CONTROLLER from Figure 4 further detailed. It con-
sists of three parallel state machines: HIGH-LEVEL-MODE modeling the high-level vertical flight control modes;
INTERMEDIATE-MODE modeling modes that can be initiated by either the pilot or the guidance system; and
LOW-LEVEL-MODE modeling modes that can only be initiated by the guidance system.

and their desired values, such as reference altitude.
Pilots use this information to monitor the behavior
of the guidance system during automatic flight or to
control the guidance system during manual flight.

