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Analysis of Faults in an N-Version Software 
Experiment 

SUSAN S .  BRILLIANT, MEMBER, IEEE, JOHN C. KNIGHT, AND NANCY G. LEVESON 

Abstract-We have conducted a large-scale experiment in N-version 
programming. A total of 27 versions of a program were prepared in- 
dependently from the same specification at  two universities. The re- 
sults of executing the versions revealed that the versions were individ- 
ually extremely reliable but that the number of input cases in which 
more than one failed was substantially more than would be expected if 
they were statistically independent. 

After the versions had been executed, the failures of each version 
were examined and the associated faults located. In this paper we pre- 
sent an analysis of these faults. Our goal in undertaking this analysis 
was to understand better the nature of the faults. We found that in 
some cases the programmers made equivalent logical errors, indicating 
that some parts of the problem were simply more difficult than others. 
We also found cases in which apparently different logical errors yielded 
faults that caused statistically correlated failures, indicating that there 
a re  special cases in the input space that present difficulty in various 
parts of the solution. A formal model is presented to explain this phe- 
nomenon. It  appears that minor differences in the software develop- 
ment environment, such as the use of different programming languages 
for the different versions, would not have a major impact in reducing 
the incidence of faults that  cause correlated failures. 

Index Terms-Design diversity, fault-tolerant software, multiver- 
sion programming, N-version programming, software reliability. 

I. INTRODUCTION 
ESPITE extensive attempts to build software that is D sufficiently reliable for critical applications, faults 

tend to remain in production software. Although fault 
avoidance and fault removal [ l ]  do improve software re- 
liability, new applications for computers in safety-critical 
systems, such as commercial aircraft and medical de- 
vices, have very high reliability requirements. For ex- 
ample, for certain applications in commercial aircraft, no 
more than a chance of failure over a ten hour period 
is permitted. This appears to be beyond the ability of stan- 
dard software engineering techniques to ensure or even to 
measure. 
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Proposals have been made for building fault-tolerant 
software [ l ]  in an attempt to deal with the faults that re- 
main in operational software. One approach, N-version 
programming [4], requires separate, independent prepa- 
ration of multiple versions of a piece of software for an 
application. The versions are executed in parallel, and 
majority voting selects the results to be used. The amount 
of reliability improvement achieved is determined by the 
degree of independence of the failures of the versions [6]. 
If two versions fail on the same input in a 3-version sys- 
tem, for example, they will either outvote a third correct 
version or no majority will exist. 

Previously, we conducted a large-scale experiment [ 101 
in N-version programming. Twenty-seven versions of a 
program were prepared independently at two universities 
and then executed one million times. The results of the 
executions revealed that the individual programs were ex- 
tremely reliable. However, the number of input cases in 
which more than one program failed, that is, where fail- 
ures were coincident, was substantially more than would 
be expected if the various programs failed in a statistically 
independent way. The faults responsible for each of the 
observed failures in the programs written for the experi- 
ment have been identified. In this paper, we present an 
analysis of these faults paying particular attention to those 
that caused more coincident failures than would occur by 
chance. 

Examination of the faults is important for several rea- 
sons. First, it sheds light on the potential value of the 
technique itself. By analyzing faults such as those de- 
scribed here, methods might be developed to allow the 
performance of N-version systems to be improved. Sec- 
ond, a better understanding of the faults will allow eval- 
uation of techniques that have been suggested for mini- 
mizing coincident failures in N-version software, such as 
the use of dissimilar programming languages or devel- 
opment environments [7], [2], [9], [ 141. In addition, new 
development techniques for N-version software may be 
suggested. Finally, a study of the faults made by different 
programmers on the same problem may provide important 
information on how to improve the reliability of single- 
version software. 

In the next section we summarize the experiment that 
yielded the twenty-seven programs studied here. A statis- 
tical analysis, presented in Section 111, is used to deter- 
mine which faults are responsible for failures that are sta- 
tistically correlated, without regard to the details of the 
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faults. The faults themselves are summarized in Section 
IV, and the interrelationships between the faults are dis- 
cussed in Section V. It was found that faults that produce 
statistically correlated failures are not necessarily se- 
mantically similar, and vice versa. Thus, faults that at 
first sight seem unrelated sometimes cause coincident fail- 
ures, and faults that seem very similar sometimes do not 
cause coincident failures. A formal model to explain this 
phenomenon is presented. Our conclusions are presented 
in Section VI. 

11. EXPERIMENT SUMMARY 
Only the major features of the previous experiment are 

described in this paper since the details have been pub- 
lished elsewhere [lo]. The application used in the exper- 
iment was a simple (but realistic) antimissile system that 
came originally from an aerospace company [ 151, [5]. The 
program reads data representing radar reflections. Using 
a collection of conditions, it decides whether the reflec- 
tions come from an object that is a threat and, if so, a 
signal to launch an interceptor is generated. 

Twenty-seven students in graduate and senior level 
classes in computer science at the University of Virginia 
(UVA) and the University of California, Irvine (UCI) 
wrote programs from a single requirements specification. 
The programs were all written in Pascal, and developed 
on a Prime 750 system using the Primos operating system 
and Hull V Pascal compiler at UVA and on a DEC VAX 
11 /750 running 4.1 BSD Unix at UCI. 

An attempt was made to obtain programmers with var- 
ied experience but this was necessarily limited by the need 
to use students as subjects. Fifteen of the programmers 
were working on bachelor’s degrees and had no prior de- 
gree, eight were working on master’s degrees, and four 
were working on doctoral degrees. The graduate students 
included four with degrees in mathematics, three with de- 
grees in computer science, and one each with degrees in 
astronomy, biology, environmental science, management 
science, and physics. The programmers’ previous work 
experience in the computer field ranged from none to more 
than ten years. There appeared to be no correlation be- 
tween the programmers’ experience levels and the quality 
of their programs. 

Once a program was completed and tested by the pro- 
grammer, it was subjected to an acceptance procedure that 
consisted of two hundred randomly-generated input cases. 
A different set of two hundred inputs was generated for 
each program in order to avoid a general “filtering” of 
common faults by the use of a common acceptance pro- 
cedure. The acceptance procedure was not part of the pro- 
cess of testing the programs. It was a quality filter used 
to ensure that only programs capable of a minimum level 
of performance were used in the analysis. 

Accepted programs were subjected to one million ran- 
domly-generated input cases in order to observe opera- 
tional behavior. The determination of the success of the 
twenty-seven individual versions was made by comparing 
their output with a separate version, referred to as the gold 

program, that had been subjected to extensive previous 
analysis. 

As required by the specification, each program pro- 
duces a 15 by 15 boolean array, a 15 element boolean 
vector, and a single boolean launch decision (a total of 
241 outputs) on each input case. Afuilure was recorded 
for a particular version on a particular input case if there 
was any discrepancy between the 241 results produced by 
that version and those produced by the gold program, or 
the version causes some form of fatal exception to be 
raised during execution of that input case. 

We define a fault formally in Section V and use it to 
explain the results of the work described in this paper. We 
define a fault here, informally, to be a defect in the al- 
gorithm implemented by a program version that is re- 
sponsible for at least one failure in the sense that changing 
the program so as to correct the defect would allow the 
program to obtain output agreeing with that of the gold 
program for that input case. For each of the twenty-seven 
versions, the faults were identified by examining the out- 
put of the program for input cases in which failure oc- 
curred and analyzing the source text. 

Once a fault was located, a correction was devised. The 
version containing the fault was modified so that either 
the original faulty code or the corrected code could be 
executed. The purpose of modifying each version in this 
manner was to allow the identification of the fault or set 
of faults responsible for each failure recorded for the ver- 
sion. Each input case that caused the version to fail orig- 
inally was regenerated. The version was then executed 
with each individual fault corrected in turn. 

For most failures, a version worked correctly when one 
and only one of its faults was corrected. For these cases, 
the fault corrected on the execution that gave correct re- 
sults was assigned sole responsibility for the failure. In a 
few instances, correcting either of two faults gave correct 
results, so it was recorded that the failure was attributable 
to either of the two faults. In some cases none of the ex- 
ecutions with a single fault corrected yielded correct re- 
sults. For these failures the version was executed with 
each pair of faults corrected in turn, then with each set of 
three faults corrected in turn, and so on, until correct re- 
sults were obtained. The faults corrected on the execution 
giving correct results were assigned collective responsi- 
bility for the failure. 

111. STATISTICAL ANALYSIS OF THE FAILURES 

For the purposes of discussion in the remainder of this 
paper, the individual faults are identified by the version 
number in which the fault occurs concatenated with a se- 
quence number for the faults associated with that version. 
Thus, for example, fault 3.1 is the first fault associated 
with version 3. The faults found in each of the twenty- 
seven program versions and the number of failures attrib- 
utable to each fault are shown in Table I. Failures asso- 
ciated with more than one fault are counted in the number 
of failures for each of the associated faults. 
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TABLE I 
FAULT OCCURRENCE COUNTS 

:auh Number of Occurrences Faull Number of Occurrences 
- 

1.1 
3.1 
3.2 
3.3 
3.4 
6.1 
6.2 
6.3 
7.1 
8.1 
R.2 
9.1 
9.2 
1 1 . 1  
12.1 
12.2 
13.1 
14.1 
14.2 
16.1 
16.2 
17.1 
17.2 
- 

2 
700 

1061 
531 

1437 
607 
511 

32 
71 

225 
98 
47 

6 
554 
356 
71 
4 

1297 
71 
28 
34 

201 
76 

- 
18.1 
19.1 
20.1 
20.2 
21.1 
21.2 
22.1 
22.2 
22.3 
23.1 
23.2 
24.1 
25.1 
25.2 
25.3 
26.1 
26.2 
26.3 
26.4 
26.5 
26.6 
26.7 

- 

8 
264 
323 
697 
85 

7 
6551 
1735 
1735 

72 
8 

260 
14 
80 
3 

140 
9 
1 
6 
4 

368 
24 3 

The manifestations of a few of the faults were imple- 
mentation-dependent. When the fault-to-failure identifi- 
cation analysis was performed, a version sometimes ex- 
ecuted correctly for an input case on which it had failed 
originally. This effect was caused by differences in the 
hardware and compilers used, and it was observed for ver- 
sions 6, 22, 23, and 26. Analysis of the input cases in- 
volved allowed the original failures of versions 6 and 23 
to be attributed to faults 6.1 and 23.1 respectively, so 
these failures were included in the failure counts for the 
associated faults in Table I. For versions 22 and 26, the 
original failures could not be associated with specific 
faults. These original failures are not included in any of 
the failure counts shown in Table I. 

In order to determine which faults caused statistically 
correlated failures, a statistical test of independence was 
performed between each pair of faults where the two ele- 
ments in a pair come from different versions. A matrix C 
of the coincident failures caused by each pair was con- 
structed. Coincident failure here means that both versions 
failed and includes failures with both identical and non- 
identical outputs. This matrix is indexed in both dimen- 
sions by the sequence of fault numbers. Thus, C,j repre- 
sents the number of test cases in which the two program 
versions containing faults i and j both failed because of 
faults i and j .  Clearly C is symmetric, and its diagonal 
represents the failure rates for the individual faults. 

For each pair of faults, an approximate x 2  test [8] was 
used to test the null hypothesis that the corresponding two 
faults cause failure independently. The observed value of 
the x statistic for each pair i, j of faults causing common 
failures was calculated, using the following expression for 
the test statistic: 

n w ,  - CIlC//Y 
C;;c,(n - C;;)(n - C;;) 

where 
n = total number of input cases = 1,000,000. 

Where the observed x2 statistic is greater than 7.88, the 
null hypothesis of independence can be rejected with 99.5 
percent certainty. The results of the 945 separate hypoth- 
esis tests are shown in Table 11. An “R” in Table I1 in- 
dicates that the null hypothesis was rejected for the cor- 
responding pair of faults at the 99.5 percent level. In that 
case, we define the two faults to be failure correlated. 
The statistical test used here is valid only if the value of 
C, is “sufficiently large,” and values greater than or equal 
to five are generally considered to give satisfactory re- 
sults. A “?” entry in Table I1 denotes a case in which the 
value of the x 2  statistic was large enough to justify rejec- 
tion of the null hypothesis, but for which the value of C, 
is too small to justify reliance on the hypothesis test. 
Dashes in the table denote entries for which the statistic 
has no relevance because the faults are in the same pro- 
gram. 

The results of these hypothesis tests indicate that 93 of 
the hypotheses should be rejected; that is, 93 fault pairs 
found in the experiment are responsible for statistically 
correlated failures. An additional 67 pairs appear corre- 
lated but there is insufficient data to have confidence in 
this conclusion. The use of a confidence level of 99.5 per- 
cent means that the probability that the null hypothesis 
will be rejected when in fact it is true is 0.5 percent. Thus, 
if the null hypothesis is in fact true for each of the 945 
hypothesis tests that were performed, the expected num- 
ber of erroneous rejections is approximately five whereas 
93 were rejected. 

It is clear from the preliminary data that more coinci- 
dent failures occurred than would be expected by chance 
[IO]. The results ofthese statistical tests show which faults 
were responsible for the coincident failures. In the rest of 
this paper, we examine these faults more carefully. 

I v .  DESCRIPTIONS OF THE FAULTS 
The faults in the programs were examined to determine 

whether those that are failure-correlated have any unique 
characteristics. Table I11 contains the details of the indi- 
vidual faults including the part of the problem involved 
(LIC number), the type of input that triggers the fault, and 
a short description of the fault. 

Several of the faults involve mistakes in the use of lim- 
ited-precision arithmetic and require some further expla- 
nation. The source text of a function called REALCOM- 
PARE, containing only four executable statements, was 
supplied to the programmers. They were instructed to use 
REALCOMPARE for all comparisons of real numbers. 
This function defines the relational operators for floating- 
point numbers in the manner described by Knuth [ 131. As 
Knuth points out, operators should be defined for floating- 
point comparison that allow many of the normal axioms 
of arithmetic to be assumed. 

The REALCOMPARE function performs limited-pre- 
cision floating-point comparison. It does so by comparing 
its two floating-point arguments, returning EQ when the 
difference between the two values is less than 0.000005 
of the larger value. Otherwise the function returns LT 
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TABLE I1 
RESULTS OF HYPOTHESIS TESTS 

24 I 

Faults 

1.1 
3.1 
3.2 
3.3 
3.4 
6.1 
6.2 
6.3 
7.1 
8.1 
8.2 
9.1 
9.2 

11.1 
12.1 
12.2 
13.1 
14.1 
14.2 
16.1 
16.2 
17.1 
17.2 
18.1 
19.1 
20.1 
20.2 
21.1 
21.2 
22.1 
22.2 
22.3 
23.1 
23.2 
24.1 
25.1 
25.2 
25.3 
26.1 
26.2 
26.3 
26.4 
26.5 
26.6 
26.7 - 

- . . . . . . . . . . . . . . . . . . . . .  ? . .  . . . . . . . . . . . . . . . . . . . .  
_ _ _ _  . . . .  R R  . .  R . . . . . . .  R R  . .  R R  . .  R . . R . . R R . . . . . .  R .  
_ _ _ _  . . .  ? R R  . .  R . ? . R ?  . .  ? R ? . R R  . . . . .  R ? . R R  . . . . . .  ? R  _ _ _ _  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  R R ?  . . . . . . . . .  ? . . . . .  . . . .  ? .  

. . . . .  - - _  . . . . .  ? . . . . .  ? . . . . . . ? . .  . . . . . . . . . . . . . . . .  
- _ _ _  

R _ - _  . . . . .  . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
? . . . . .  

. .  ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. R R  . . . . .  ? - -  . .  R . ?  . .  ? . . R ? . ? R R . . R . . R  . . .  R . . . . . .  R R  

. R R  R . . . R . . . R ? . . R R . . R . . . . . R R . . . . . .  R R  

. . . . . .  R . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  ? . .  . . . . . . . . . . . . .  

. R R  . .  ? . . ? R R . . - . ? . R ? R . R ? . . R R . . R . . R . . ? R . . . . . .  R R  

_ _ _  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

_ _  
_ _  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. .  ? . . . . .  R ?  . . .  ? - -  . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  
? . . . . . . .  ? . . . . . . . .  . . . . . . . .  

. .  R . . . . . . .  R . . R . . . - - . . . . . . R R . . . . . . . . R . . ? ? . . . .  R 

. .  ? . . . . .  R ? .  . .  . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  

. . . . .  ? . . . . . . .  ? ?  

. . . . . . . . . . . . . . . .  . . .  R . . . . . . . . . . . . . . . .  

. R ? . R  . . . .  R R  . .  R . . . . .  . .  ? ? R R  . .  R . .  ? ? . ? R  . . . . . .  R .  
? R R . R  . . .  ? ? ?  . .  ? . ?  . .  ? ? . R ?  . . . . .  ? ? . . ? . .  . . . .  I ?  
. .  ? . ?  . . . . . . . . . . . . . . . .  ? ? -  . . . . . . . . .  R . . . . . . . . . . .  
. . . . . . . . .  ? . . . . . . . . . . .  ? 
. R R  . . . . .  ? R R  . .  R . ? . R ?  . .  R R . ? - -  . .  R . . R  . .  R R . . . . .  . R R  
. R R  . .  ? . . ? R R . . R . ? . R ? R . R ? . . - - . . R R R R . . ? R . . . . . .  R R  

_ _  

. . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . .  _ _  ? . . . R . .  

. R  . . . . . . .  R R . ? R  . . . . .  R . R  . . .  R R  ? . R ? R . .  . . . .  R R  

. . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  R 

. R R  . . . . . .  R . . . R . . . . . . . ? ? . . R R . . ? . . - - . . R . . . . . .  ? R  

. .  ? . ?  . . . . . . . . . . . . . . . .  ? ? R  . . . . . . . . . . . . . . . . . . .  _ _  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  R ? ?  

. R R  . . . . . . .  R . . ? . . . R . . . ? . . . R ? . . ? . . . . . - - -  . . . . .  ? ?  

. R R  . . . . .  ? R R  . .  R . ?  . .  ? . . R ? . . R R . . R . . R . . - - - . . . . .  R R  _ - -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  
- - - - - - - . . . . . . . . . . . . . . . . .  ? . . . . . . . . . . . . . . . . . . . .  

. . . . . . .  ? . . . . . . . . .  ? . . . . . . . . . . . . . . . . . . . .  - - - - - - - 
- - - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- - - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- - - - - - - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. R ? . ?  . . . .  R R  . .  R . . . . . ? . R ? . . R R . . R . . ? . ? ? R . - - - - - - -  

. .  R . . . . . .  R R  . .  R . . . R . ? . . ? . ? R R . . R . . R . ? ? R . - - - - - - -  

(GT) if the first argument is less than (greater than) the 
second. Essentially what REALCOMPARE does is to es- 
tablish a region around the larger operand in which the 
operands are considered equal. The size of the region is 
determined by the size of the larger operand. 

Four of the programmers erroneously used limited-pre- 
cision comparisons with zero to determine sign, i.e., they 
attempted to use REALCOMPARE to determine if a 
number was negative. It is clear that small negative num- 
bers (i.e., close to zero) will be interpreted mistakenly as 
nonnegative using this approach to determining sign. This 
type of fault could have been a result of inexperience on 
the part of the programmers although one of the partici- 
pants making this mistake had many years of work ex- 
perience in real-time, scientific programming. None of 
these faults were failure-correlated with each other and so 
do not contribute to our analysis of coincident failures. 

Several faults arose from the comparison of the cosines 
or sines of angles rather than the angles themselves. Al- 

though mathematically the comparisons are equivalent, 
difficulties arise due to the relatively flat shape of the co- 
sine and sine curves near zero and one, respectively. On 
the flat parts of these curves, angles that are quite different 
have cosines or sines that are nearly equal, so compari- 
sons using a tolerance find that the angles are different, 
but their cosines or sines are equal within the tolerance. 
The specification for the application stated that angles 
were to be compared, not functions of angles. 

An opportunity for multiple correct solutions also arose 
from our attempt to encourage diversity. Launch condi- 
tions 3 and 10 require the determination of whether the 
angle formed by three points satisfies either of the con- 
ditions: 

angle < (T - E )  

or 

angle > (T + E) 
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Three almost collinear points. Inaccurate algorithm to m i n e  cdlinearity; points 
head as collinear when iust nearlv collinear. 

FAULT 
1.1 

3.1 

LIC 4.11,15 

3.2 

3.3 

3.4 

which- length of longest side points f& an obtuse triangle. 
exceeds perpendicular distance to 
third vertex. 
Three collinear or almost collinear 
points. 

Due to machine mundoff error. negative result ob- 
tained when length of one side of triangle subtracted 
fmm half ia nerimeter 

6.1 

6.2 

LIC 2.9.14 

LIC IO 

LIC 3. IO 

LIC 3.10 

LIC 2.9.14 
LIC 3 

LIC IO 

6.3 

7.1 

C o m p l i  relationship among ComperisMl with zem using REALCOMPARE used 
three points arising From algorithm to ensure that a quantity to be used as an argument D 
used IO wmprte radius of circle sqr~isnonnegdtive. 
containing the points. 

Two of three points foincide. Apparent typographical error in array index handling 
special c a x  of second point coincident with either 

Similar to fault 7. I .  

Angle measurement of 180 rather than E used when 
point 2 between points I and 3. 

Similar in origin and effect to fault 13.1. 

Cosines rather than angles compared. 

Similar 10 fault 17.1. 

fiRI M third. 
lluee almost collinear points (sub 
tended angle near zem). 

‘Iluee collinear points (subtended 
angle is x). 

Seefault13.1. 
Three almost collinear points (sub- 
tended angle near zero). 
Three almost collinear wints (sub- 

8.1 

8.2 

9.1 

LIC 3.10 

9.2 

1 1 . 1  

12.1 

12.2 

13.1 

14.1 

14.2 

16.1 

gles. 
Decides condition not satisfied by any set of three 
points when one set involves a coincident vertex and 
endmint. 

Vertex coincides with an endpoint. 

16.2 
17.1 

17.2 

18.1 

19.1 

20.1 

20.2 

LIC 3, IO 

LIC 3, IO 

LIC 3, IO 

LIC 2,9,14 
LIC4 

LIC 11 

LIC 15 

21.1 

Three collinear points (subtended 
angle zero). 
Three collinear or almost collinear 
points (subtended angle near zero). 

Coincident points. 

If tangent is zero. assumes angle is E; misses case in 
which angle is zero. 
In applying formula tan=sqn(l-sqr(cos))/cos, round- 
off error causes negative argument U) sqrl. 
Special case for coincident points in algorithm for 
computing smallest circle containing three points 
fails when first and second points coincide. 

Similar in origin and effect to fault 13.1. 
Similar to fault 9.2. 

Similar to fault 9.2. 

Similar to fault 9.2. 

See fault 13.1. 
Three collinear or almost collinear 
points. 
Three collinear or almost collinear 
points. 
Three collinear or almost collinear 
mink<. 

21.2 
22.1 

22.2 

22.3 

23.1 

23.2 
24.1 

LIC 3, IO 

LIC 3, IO 
LIC 2,9,14 

TABLE I11 
FAULT DETAILS 

Three collinear or almost collinear 
points (subtended angle near zero). 

Angle near x + E. E large. 
Coincident points. 

Uses REALCOMPARE to delermine if calculated 
angle negative; misses some angles near zero. 

Similar to fault 18.1. 
Error in arguments to function that determines coin- 
cidence (coincidence of points 1 and 2 checked rather 
tban that of 1 and 3). 

LIC# I INPUT CONDITION I FAULT DESCRIPTION 
LIC3. I O  I Anelesnearn+e.Elarae. I Calcuhles anaks between A and k ralher than 

between o &-A. ( F ~ ~ I S  teause to lmce for com- 
parisOn with A +  E much gIeab3 lhan fW A ~ E.) 

subtended angle- misses case in which angle is zem. 
Similar to fault 3.1. 

angle zero). 

angle zero). 

angle zero). (WO Mher points. calculeces distance to nearest point 
(rather than mu) when mints are collinear and first 

LIC 9. 14 A set of three points in which each 
pair has a common coordinate. 

In determining coincidence. “and“ and “or” con- 
I d  in predicate (results in points described in input 
condition being mated as if two of Ihe points win- 

angle zero). 

. .  . .  
angle zero). I izonlal and verlical lines 

LIC 2,9,14 I Three points form acute triangle for I Inconecl pah condition to detemine whaher three 

LIC 3, IO Three collinear or almost collinear Machine round-oN m r  c a w  calculated cosine of I mints (subtended anele near zero). I anele famed bv three minu to be mater than 1. 

LIC 5 I Point ~1 rieht si& of x-axis. I Predicate wine = instead of >= results in incorrect I a s s i g n m e n t t o ~ ~ t .  
LIC 3, I O  I ~ k e e  almost collinear points (an- I Similar to fault 7.1. 

I d e  war7eml. I 

. .  I tended angle near zero). 
LIC 3. IO I Angles near E + E. E large. I Similar to fault 1.1--occurs on a different set of an- 
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anglc zero). points whcn point 1 lies bctwccn points 2 and 3 nnd 
is closcr IO point 2 than LO point 3. 

LIC 3, IO Throe collincar poinu (subsnded Similar ~025.l.diffcrcntpsth. 
anQk ZCIO). 

TABLE I11 (Continued.) 

FAULT I LIC# I INPUT CONDITION I FAULT DESCRIPTION 
25.1 I LIC 3. IO 1 Thrcc collinear poinu (subtcndcd I Missing casc in computing anglc formed by three 

t 

L’ 

(b) 

Fig. 1 .  The angle formed by three points. 

where E is a parameter supplied as input. The specification 
indicates that the second of the three points is the vertex. 
However, as is illustrated in Fig. l(a), there is still a 
choice of angle to be measured. Either the angle marked 
0 or the angle marked 2n - 0 could be considered. In 
absolute terms it makes no difference which angle is mea- 
sured. Fig. l(b) illustrates that the smaller of the two pos- 
sible angles is less than (a - E )  if and only if the larger 
angle is greater than ( n  + E ) .  However, recall that the 
tolerance used by REALCOMPARE depends on the size 
of its arguments. Thus, occasionally the function returns 
EQ for the larger pair when it returns LT for the smaller 
pair. There is a dilemma here since revising the specifi- 

cation to identify which of the two possible angles is to 
be measured would reduce the choices available to the 
programmer, thus reducing the potential diversity among 
the versions. 

V. DISCUSSION 

Our goal in analyzing the individual faults in the ver- 
sions was to attempt to understand the correlated failures 
that were observed in the experiment. We wanted to de- 
termine what other relationships, if any, exist among 
faults that are failure-correlated. 

We define faults to be logically related if, in our opin- 
ion, they are either the same logical flaw, or they are sim- 
ilar logical flaws and are located in regions of the pro- 
grams that compute the same part of the application. These 
assessments are based on our understanding of the appli- 
cation and assumptions about the intentions of the various 
programmers, and are therefore necessarily subjective. 

Initially, we hypothesized that faults that are failure- 
correlated would be logically related, and vice versa. It 
seemed intuitively reasonable that there would be certain 
parts of the problem that would prove to be just more dif- 
ficult to handle or more “error prone” than others. 

This hypothesis does explain some of the observed fail- 
ure correlations. For example, faults 3.1 and 3.2 involve 
the calculation of the angle formed by three points as re- 
quired by launch conditions 3 and 10. In the case in which 
the three points are collinear, the programmer apparently 
failed to realize that the angle formed could be zero as 
well as n. It is easy to explain the failure correlations 
between these faults and faults 8.1, 8.2, 25.1, and 25.2. 
The authors of versions 8 and 25 both realized that colli- 
near points could form a zero angle, but failed to consider 
all of the cases in which such an angle is formed. It is also 
easy to understand the correlations between all of these 
faults and fault 20.1. Version 20 takes a slightly different 
approach, calculating the tangent of the angle formed and 
mishandling the case in which the tangent is zero. Since 
a zero tangent indicates that the points are collinear, the 
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same special case is responsible for the difficulty. Version 
20, like version 3, calculates an angle of R for all sets of 
collinear points, completely overlooking the cases in 
which the angle formed is zero. Although no two of this 
set of seven correlated faults are identical, the errors in 
logic seem to us to be similar. 

However, there are faults that we classify as logically 
related which are not failure-correlated. For example, 
faults 7.1 and 17.1 both result from comparing cosines of 
angles rather than the angles themselves in the same part 
of the application, yet they caused no observed coincident 
failures. Fault 7.1 causes failure on input cases in which 
launch condition 3 or 10 is not satisfied, but for which 
there is some angle near zero that almost satisfies the con- 
dition. Fault 17.1, on the other hand, causes failure when 
launch condition 3 or 10 is satisfied, and the angle sub- 
tended is near zero. 

Of more concern, however, is the fact that the hypoth- 
esis also fails to explain some of the observed failure cor- 
relations. For example, faults 11.1, 20.2, 22.1, 26.6, and 
26.7 are all failure-correlated with the faults in versions 
3, 8, 20, and 25 that involve the incorrect handling of 
cases in which collinear points subtend an angle of zero. 
However, faults 11.1, 20.2, 22.1, 26.6, and 26.7 are of 
a completely different nature. All of these cause fatal ex- 
ecution errors on calls to the square root function with 
negative arguments, and result from the failure of the pro- 
grammers to consider that rounding errors may give an 
inaccurate computed result. Faults 1 1.1 and 20.2 both oc- 
cur when a correctly computed cosine has an absolute 
value greater than one due to rounding error. The effects 
of rounding error are quite small so the exact (but un- 
known) cosine must have been close to one in these cases, 
and hence the corresponding angle had to be close to zero 
or R. Thus the failure correlation with other faults that 
mishandle zero angles is understandable. Similarly, faults 
22.1, 26.6, and 26.7 are triggered when the calculated 
sum of two sides of a triangle is less than the length of 
the third side due to roundoff errors. Once again, this can 
only occur when the three points forming the triangle are 
approximately collinear, and the failure correlation is ex- 
plained. 

More difficult to understand is the failure correlation 
between fault 14.1 andeachoffaults3.2, 8.2, 11.1,20.1, 
20.2, and 25.1. Fault 14.1 is the use of an incorrect sub- 
script in a call to a function which determines whether the 
first or third in a set of three points coincides with the 
second. The coordinates of the three points are ( x [ i ] ,  
~ [ i l ) ,  ( x t J l ,  y [ J l > ,  and (x[kl ,  ~ [ k l ) ,  but an apparent 
typographical error results in substituting (x  [ j  1, y [ i I ) for 
the second point in considering the special coincident 
point case. Although this fault apparently does not in- 
volve the angle formed by collinear points, an investiga- 
tion revealed the reason for the observed correlations. In- 
put cases that include a set of three points that form a 
vertical line and satisfy launch condition 10 trigger faults 
3.2, 8.2, 11.1, 20.1, 20.2, and 25.1 due to the collinear- 
ity of the points. Fault 14.1 is also triggered because the 

faulty function call translates the second point such that 
it coincides with the first. Version 14 finds that no angle 
is formed, so it concludes that condition 10 is not satisfied 
by the points. 

Based on the examples discussed above, it is clear that 
there are faults that produce correlated failures but that 
are not logically related. Thus our initial hypothesis does 
not explain all the observed failure correlations. They can 
be explained, however, if we note that faults causing cor- 
related failures involve a mishandling of all inputs having 
some specific characteristic, i.e., both faults involve han- 
dling the same set of input cases incorrectly. This may 
appear tautological, but serves to emphasize that the sim- 
ilarities are not in the errors in the code, but instead are 
in the inputs. The following model is useful in determin- 
ing why and when correlated failures occur. A program 
computes a function P that maps elements in a domain I 
to a range 0. That is: 

P : I +  0 

where 

I = { i l ,  i2, - , in} 

0 = {o l ,  0 2 ,  * * , o n } .  

and 

This function P consists of a set of partial functions where 
each partial function correspond to one of the paths in the 
program: 

P = { P I ,  pz ,  * * 9 Pm} 
where for each P,, 1 5 J I m: 

p ] : z [ P J l  -+ O[']1 

I [ P , ]  is the domain and O[P,]  is the range of the partial 
function P,. Clearly: 

z = I [ P , ]  U I [ P , ]  U * .  . I IPm] 

and 

0 = O I P l ]  U 0 [ P 2 ]  U * OIPm] 

where f o r i  # j :  

There is a fault in a program when the function imple- 
mented P' is not the function P that is desired, i.e., a 
mistake exists in the program that implements the func- 
tion. A fault means that one or more partial functions P, 
that make up P' are incorrect. A partial function PI is in- 
correct, i .e.,  faulty, when the computation or the path 
condition that corresponds to PI is erroneous, i.e., faulty. 

When looking at the relationship between the failures 
of two programs, we are concerned with two cases: 

1) The two programs both have faults but they lie on 
paths with disjoint input domains. Therefore they will not 
fail coincidentally since their input domains are disjoint. 
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2) The two programs each have a fault or faults on a 
path or paths whose input domain(s) overlap either par- 
tially or completely. 

In the latter case, three possibilities exist: 
I )  The partial functions never produce the same wrong 

2) The partial functions sometimes produce the same 
wrong output. 

3) The partial functions always produce the same 
wrong output. Note that in this case the faults need not 
be the same. For example, one may set an output variable 
to 1 and the other divide the output variable by itself. The 
faults need not even be logically related, just compute the 
same erroneous partial function. 

Our original hypothesis (and one that appears to be 
common in the literature) was that faults causing coinci- 
dent failures would be logically related. The above model 
shows that this need not necessarily be the case, and it 
explains the correlations that we found between faults that 
were not logically related. Therefore, we propose a sec- 
ond hypothesis that faults that result in correlated failures 
are input-domain related, i .e . ,  two faults are triggered by 
circumstances associated with a particular input whether 
or not the underlying flaws in the partial functions asso- 
ciated with the faults are related logically. Our second 
hypothesis can be seen as an extension of the first, since 
logically-related faults may also be input-domain related. 
It does, however, explain why logically-related faults 
sometimes did and sometimes did not cause correlated 
failures. The extent of the correlation will depend on the 
proportion of the inputs in the failure-domains of the com- 
mon and identically wrong partial functions. The actual 
performance of an N-version system will depend on how 
often inputs from these common failure-domains are en- 
countered in execution. 

There are some important implications of this hypoth- 
esis in terms of whether “forcing” diversity will be ef- 
fective. The first hypothesis, that correlated failures are a 
product of logically-related faults, implies only that sep- 
arate development may not prevent different implemen- 
tators from making the same mistake. The second hy- 
pothesis, that input-domain related faults may cause 
correlated failures, implies that correlated failures may 
occur even if the implementors use entirely different al- 
gorithms and make different mistakes. 

VI. CONCLUSIONS 
Our primary goal in this research was to understand 

what types of faults lead to coincident failures. We con- 
clude that this occurs when the faulty paths have common 
input-domains. Correlated failures occur when the partial 
functions computed by the paths are identically wrong. 
The actual mistakes made, however, need not be similar 
or logically-related. We did find that programmers often 
make identical errors in logic. Any given algorithm for 
solving a problem is likely to involve some computations 
that are simply more difficult to handle correctly than oth- 

output. 

on difficult computations than easy ones. We also found, 
however, that correlated failures arise from logically-un- 
related faults in different algorithms or in different parts 
of the same algorithm. It is interesting that the program- 
mers in our experiment did not seem able to identify the 
difficult parts of the problem or the difficult computations 
in their algorithms; the faults are not located in the parts 
of the programs where the programmers expected them to 
be, as determined by a postexperiment questionnaire. 

The Consistent Comparison Problem 131, and other 
problems that we observed with real number compari- 
sons, illustrate that an understanding of the detailed nu-  
merical issues involved in performing such comparisons 
is particularly important in N-version programming. Care 
must be taken in specifying and implementing N-version 
software to minimize difficulties in reaching a consensus 
among the versions. However, as has been shown else- 
where [3], these difficulties cannot be eliminated entirely. 

Simple methods to reduce correlated failures arising 
from logically-unrelated faults (i.e., input-domain related 
faults) do not appear to exist. The faults that induced 
coincident failures were not caused by the use of a specific 
programming language or any other specific tool or 
method, and even the use of diverse algorithms did not 
eliminate input-domain related faults. In most cases, the 
failures resulted from fundamental flaws in the algorithms 
that the programmers designed. Thus we do not expect 
that changing development tools or methods, or any other 
simple technique, would reduce significantly the inci- 
dence of correlated failures in N-version software, 

APPENDIX 
LAUNCH INTERCEPTOR CONDITIONS 

The Launch Interceptor Conditions are defined as fol- 
lows: 

1) There exists at least one set of two consecutive data 
points that are a distance greater than the length, 
“LENGTHl”, apart. 

(0 < = LENGTH1) 

2) There exists at least one set of three consecutive 
data points that cannot all be contained within or on a 
circle of radius ‘‘RADIUS 1 ” . 

(0 < = RADIUSI) 

points which form an angle such that: 
3) There exists at least one set of three consecutive data 

angle < (“PI” - “EPSILON”) 

or 

angle > (“PI” + “EPSILON”). 

The second of the three consecutive points is always the 
vertex of the angle. If either the first point or the last point 
(or both) coincides with the vertex, the angle is undefined 
and the LIC is not satisfied by those three points. 

ers, and programmers are more likely to make mistakes (0 < = EPSILON < PI) 
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4) There exists at least one set of three consecutive 
data points that are the vertices of a triangle with area 
greater than “AREA 1 ” . 

( 0  < =   AREA^) 
5 )  There exists at least one set of “Q-PTS” consec- 

utive data points that lie in more than “QUADS” quad- 
rants. Where there is ambiguity as to which quadrant con- 
tains a given point, priority of decision will be by quadrant 
number, i.e., I,  11, 111, IV. For example, the data point 
(0, 0)  is in quadrant I, the point ( - 1, 0)  is in quadrant 
11, the point (0, - 1 ) is in quadrant 111, the point (0, 1 ) 
is in quadrant I and the point ( 1 ,  0)  is in quadrant I. 

(2  < = Q-PTS < = NUMPOINTS), 

( 1  < = Q U A D S  < =  3 )  
6) There exists at least one set of two consecutive data 

points, (X[i], Y[i]) and (X[j], Y[j]), such that X[j] - 
X[i] < O(wherei  = j  - 1). 

7) There exists at least one set of “N-PTS” consec- 
utive data points such that at least one of the points lies a 
distance greater than “DIST” from the line joining the 
first and last of these “N-PTS” points. If the first and 
last points of these “N-PTS” are identical, then the cal- 
culated distance to compare with “DIST” will be the dis- 
tance from the coincident point to all other points of the 
“N-PTS” consecutive points. The condition is not met 
when “NUMPOINTS” < 3.  

(3  < = N-PTS < = NUMPOINTS), (0 < = DIST) 

8) There exists at least one set of two data points sep- 
arated by exactly ‘ ‘K-PTS” consecutive intervening 
points that are a distance greater than the length, 
“LENGTHl”, apart. The condition is not met when 
“NUMPOINTS” < 3. 

1 < = K-PTS < = { NUMPOINTS - 2 )  

9) There exists at least one set of three data points 
separated by exactly “A-PTS” and “B-PTS” consecu- 
tive intervening points, respectively, that cannot be con- 
tained within or on a circle of radius “RADIUSl”. The 
condition is not met when “NUMPOINTS” < 5 .  

1 < = A-PTS, 1 < = B-PTS 

A-PTS + B-PTS < =  NUMPOINTS - 3 

10) There exists at least one set of three data points 
separated by exactly ‘ ‘C-PTS” and ‘ ‘D-PTS” consecu- 
tive intervening points, respectively, that form an angle 
such that: 

angle <(“PI” - “EPSILON”) 

or 

angle > (“PI” + “EPSILON”) 

The second point of the set of three points is always the 
vertex of the angle. If either the first point or the last point 
(or both) coincide with the vertex, the angle is undefined 

and the LIC is not satisfied by those three points. When 
“NUMPOINTS” < 5 ,  the conditions is not met. 

1 < = C-PTS, 1 < = D-PTS 

C-PTS + D-PTS < =  NUMPOINTS - 3 

11) There exists at least one set of three data points 
separated by exactly “E-PTS” and “F-PTS” consecu- 
tive intervening points, respectively, that are the vertices 
of a triangle with area greater than “AREA1”. The con- 
dition is not met when “NUMPOINTS” < 5 .  

1 < = E-PTS, 1 < = F-PTS 

E-PTS + F-PTS < =  NUMPOINTS - 3 

12) There exists at least one set of two data points, 
(X[i], Y[i]) and (Xu], Yb]), separated by exactly 
“G-PTS” consecutive intervening points, such that X[j] 
- X[i] < 0 (where i < j ) .  The condition is not met 
when “NUMPOINTS” < 3.  

1 < = G-PTS < = { NUMPOINTS - 2 )  

13) There exists at least one set of two data points, sep- 
arated by exactly ‘ ‘K-PTS” consecutive intervening 
points, which are a distance greater than the length, 
“LENGTHl,” apart. In addition, there exists at least one 
set of two data points (which can be the same or different 
from the two data points just mentioned), separated by 
exactly “K-PTS” consecutive intervening points, that are 
a distance less than the length, “LENGTH2,” apart. Both 
parts must be true for the LIC to be true. The condition 
is not met when “NUMPOINTS” < 3. 

(0 < = LENGTH2) 

14) There exists at least one set of three data points, 
separated by exactly “A-PTS” and “B-PTS” consecu- 
tive intervening points, respectively, that cannot be con- 
tained within or on a circle of radius “RADIUSl”. In 
addition, there exists at least one set of three data points 
(which can be the same or different from the three data 
points just mentioned) separated by exactly ‘ ‘A-PTS” and 
“B-PTS” consecutive intervening points, respectively, 
that can be contained in or on a circle of radius 
“RADIUS2”. Both parts must be true for the LIC to be 
true. The condition is not met when “NUMPOINTS” < 
5 .  

(0 < = RADIUS2) 

15) There exists at least one set of three data points, 
separated by exactly “E-PTS” and “F-PTS” consecu- 
tive intervening points, respectively, that are the vertices 
of a triangle with area greater than “AREA1”. In addi- 
tion, there exist three data points (which can be the same 
or different from the three data points just mentioned) sep- 
arated by exactly “E-PTS” and “F-PTS” consecutive 
intervening points, respectively, that are the vertices of a 
triangle with area less than “AREA2”. Both parts must 



BRILLIANT er U / .  : N-VERSION SOFTWARE EXPERIMENT 247 

be true for the LIC to be true. The condition is not met 
when “NUMPOINTS” < 5. 

(0 < = AREA2) 
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