Use of SpecTRM in Space Applications
Masafumi Katahira; MIT; Cambridge, Massachusetts

Nancy G. Leveson, Prof.; MIT; Cambridge, Massachusetts

Keywords: Safety Critical Software, Space System, SpecTRM, Formal Model,

Intent Specification, Model Analysis

Abstract

This paper provides an introduction to the application of SpecTRM (Specification Tools and Requirements Methodology) to safety-critical software in spacecraft controllers. The SpecTRM toolset directs the design toward modeling the formal behavior of safety-critical software and its operation, while maintaining significant safety information. We have studied the applicability and effectiveness of the methodology on several projects to illustrate the variety of projects on which SpecTRM can be applied, as well as those stages of a system design the methodology is most useful. These case studies have been completed for safety-critical controllers on the International Space Station. Motivation for the use of SpecTRM for the design of space critical systems is explained, as well as benefits achieved from formal modeling using SpecTRM. Our experience has shown that the benefits gained from using SpecTRM can help to achieve safety and mission success in space systems.
Introduction

Computer systems are indispensable for the success of all space systems, and will continue to be a key technology for future space projects. The trend in system design is toward an increase in functionality and automation of the space systems. This leads to more complex systems with new types of safety issues concerning both the design and management of the system. Accidents or fatal failures are commonly traceable to high-level requirements incompleteness such as task design or system design omissions. In light of this observation, the formal specification toolset SpecTRM has been studied to support the design, implementation, and maintenance of safety-critical systems.
SpecTRM is a system and software engineering environment designed to include safety engineering processes such as safety assessment and hazard analysis (ref. 1). An intent specification is the system specification methodology used in SpecTRM (ref. 2). This intent specification includes most of the features needed to structure a critical system specification including traceability from high-level requirements and safety constraints (with hazard analysis) to the component specification model, code, and operator tasks. Our experience has shown that without special mathematical knowledge or extensive training, engineers in most fields can easily use intent specifications to specify blackbox behavior by using SpecTRM-RL (SpecTRM Requirements Language) (ref. 3).
The structure of the intent specification is described in figure 1. Each level of an intent specification shows the depth of intent. However, the levels of intent are not linked directly to a specific software development phase. The specification description in each intent level contains information about the environment, the operator tasks and the system description. The system description can be decomposed into components or subcomponents. Besides the two directions mentioned above, the intent specification is designed to deal with any abstraction level (depth of refinement), i.e. it can be very flexible and can be refined iteratively during development.

In SpecTRM, it is possible to start building any part of the intent specification, i.e. any level of intent, and any refinement of the specification description. The contents of intent specifications are very carefully designed from a viewpoint of system safety. Modeling is, therefore, easy even for engineers who are unfamiliar with formal methods. The level 3 blackbox model is always executable and usable for both formal analysis and simulation including hardware-in-the-loop testing.

[image: image1.wmf]Valve

State 2

Valve

State 1

Pressure

State 3

Pressure

State 2

1) Automation

Controller

2) Valve

Controller

5) Sensor

Valve State

3 (real)

Pressure

State 1(real)

4) Actual Cabin

Air

3) Valves

Bus

Figure 1: The structure of an intent specification

Visualizing a blackbox specification model and task model and animating system behaviors as defined in the intent specification, are useful for designers and reviewers to help them capture the system behaviors correctly by comparing the specification to their own mental model of the expected behavior.

Leveson et al. have modeled very large and complex systems, e.g., TCAS-II (aircraft collision avoidance system) (ref. 2) and CTAS (center TRACON automation system) at Dallas/Ft. Worth (ref. 4) with SpecTRM, studies which have exemplified the applicability of SpecTRM to avionics systems. Recently HETE-2 (ref. 5) and MD-11 (ref. 6) have been modeled with SpecTRM and several findings were reported. Easterbrook has in (ref. 7) studied lightweight formal methods including the SpecTRM blackbox modeling of the Failure Detection and Isolation Recovery function (FDIR) in the International Space Station and reported in (ref. 8) the effectiveness of the use as an Independent Verification and Validation (IV&V) methodology. Thus, the high potential of SpecTRM has shown it to be a supportive toolset that can be used for various real scale projects. In this paper we describe our experience in modeling several space systems, such as the Japanese Experimental Module (JEM) and the Centrifuge in the International Space Station (ISS). These systems were chosen to focus on space-specific characteristics for development of on-board applications and to discuss the applicability of SpecTRM modeling.

In the next section, we explain how SpecTRM works for specific problem investigation and correction by describing a safety-critical problem found in the JEM system testing phase. Benefits of using a formal model and required aspects of formal modeling for space projects are discussed by comparing these models with today's applied software safety methodologies and requirements for spacecraft controllers. In later sections, we describe what we can do with SpecTRM during the early development phase and how the SpecTRM toolset can be used for system modeling and analyzing by using reverse engineering or maintenance work. We have also checked the system for new kinds of safety issues such as mode confusions caused by incompleteness and inconsistency of high level requirements.
Necessity of Formal Modeling

[image: image3.wmf]SUPERVISORY MODE

INFERRED SYSTEM STATE

Automation

Crew (Manual)

Isolation

Not Isolation

Pressure

Sensor (Main)

Cabin Presssure A

CONTROL MODE

Pressure

Sensor (Backup)

Cabin Pressure B

Relief Stop Sequence

Relief Start Sequence

Control Valve Position

Activated

Deactivated

Unknown

Isolation

Valve

Control

Valve

Isolation

Valve Open

Activated

Deactivated

Unknown

Control

Valve Open

Isolation Valve Position

Open(Variable)

Closed

Unknown

Open

Closed

Unknown

Control Valve Power

Isolation Valve Power

On

Off

Unknown

On

Off

Unknown

JEM Cabin

Pressure Control

There is no doubt that the usefulness to software development of a formal modeling methodology increases as the complexity and criticality of the system increases. However, formal modeling and analysis techniques have not been used in industry. To determine the necessary characteristics of a formal model that could be used in industry and to show how a formal model works to detect and correct a specific problem, we have modeled a real safety-critical problem found in the Japanese Experimental Module (JEM) based on the original specification that is including the problem. Those problems have been solved in the actual system by now. The JEM, one of the ISS elements, is the manned facility in which astronauts can perform experimental activities for a long duration of time. The following problem with a cabin pressure controller was found in the JEM.

Cabin Pressure, Pc, was outside of the safety pressure range, 13.9 psi ≤ Pc < 15.2 psi, which could cause a catastrophic hazard.

Functional Requirement (1):

The high-level functional requirement is:

The Automation controller shall start cabin pressure relief when the sensor detects that the pressure is the higher threshold (15.2 psi) or above, and stop pressure relief when the sensor detects the pressure is below the lower threshold (13.9 psi).

The software in the cabin pressure controller works as follows:

1) The automation Controller checks the sensor data.

2) When the controller detects too high pressure in a cabin, it executes the relief start sequence.

3) In the relief start sequence, the commands*; isolation valve power on, isolation valve open, control valve power on, and control valve variable set, are sent to the valve controller.

4) After receiving the two commands; isolation valve power on and isolation valve open, the isolation valve opens. After receiving the two commands; control valve power on and control valve variable set, the control valve opens and starts controlling the cabin pressure. Then, finally pressure relief in the cabin starts.

(*: This function is identified as a Must Not Work function. Before sending each hazardous command, it performs prerequisite check such that control mode is Isolation or both sensors are correct.)

Modeling the original specification of the cabin pressure controller using SpecTRM gives the blackbox specification model as described in figure 2 and figure 3. Figure 2 shows the blackbox behavior model. The problem occurs during the pressure relief when control authority is in the automation instead of a crewmember, the operating mode of the JEM is in Isolation mode (that is, isolated from other ISS modules), only the relief start sequence is activated, an isolation valve is powered on and open, and a control valve is also powered on and controlling the rate of pressure relief.

Figure 2: JEM cabin pressure control model

Although the problem was caused by a simple error such that the higher threshold set at 15.2 (see figure 3) did not include any timing margin to control the pressure, no one had detected this problem during the early development phase. The software was consistent with the high-level functional requirement, because the software detected the situation and triggered the relief sequence correctly. During the software development itself, it was hard to find this problem even by complete software testing. System engineers, environmental engineers, and mechanical engineers all thought that the system would behave correctly because of the high-level functional requirement (Functional Requirement (1)). In general, in emergency situation such as this, the controller software can easily become overload. Indeed, the behavior of the mechanical valves had not been determined until the software development was finished. The unknown factors of timing and behavior still remain dependent on the load in controllers and networks, and other unintentional executions of recovery sequences.

Figure 3: A part of the blackbox model of the JEM cabin pressure control

[image: image4.wmf]Task Model

Select higher

spin rate

Stop

Steady Rotation

Spin rate >= Target rate

Spin-up

Spin-down

User Model

Spin rate <= Target Rate

Spin rate > Speed Limit

Spin rate > Speed Limit

Spin rate > Speed Limit

Select new

profile

Select lower

spin rate

Select spin

rate

Select new

profile

Select new

profile

Spin rate < Target rate

increase spin

rate according

to profile

decrease spin

rate according

to profile

Spin rate > Target rate

Maintain &

Monitor rate

Crew in Centrifuge

Crew in ISS

Maintain &

Monitor rate

Stored Command

Operation

Request

increasing rate

Increasing

rate

Select higher

spin rate

Request

decreasing rate

Decreasing

rate

Select lower

spin rate

Ground Operator

Select higher

spin rate

Emergency

Stop

Loss of Spin

Control

Emergency

Stop

Maintain &

Monitor rate

Spin Control Model

Emergency

Stop

Emergency

Stop

Emergency

Stop

Stored Command

Operation

Planned rate

increasing

Select lower

spin rate

Planned rate

decreasing

Select higher

spin rate

Select lower

spin rate

Planned rate

decreasing

Planned rate

increasing

Emergency

Stop

Loss of Spin

Control

Emergency

Stop

State

Transition

Event

Action

Communication

Point

Building a blackbox model of this software behavior with SpecTRM, the problem could have been found in a much earlier phase of development. Even if the precise threshold pressure is not defined, we can execute our model and check its completeness to assure that the threshold has been set low enough to avoid being over the threshold. As shown in figure 3, SpecTRM also explicitly reminds designers of many important items to be considered in the design from a system safety view. In this case, we can define “Timing behavior” in SpecTRM tool’s template to simulate the timing behavior. The system behavior affected by the execution of any other unintentional command sequences can also be simulated with those blackbox models. Though we have also modeled the same problem using the PVS (Prototype Verification System, ref. 9), it is hard to find the problem using only abstract information. Analyzing this case study, we have identified several important attributes of formal modeling methodology:

Predictability: The modeling language must be predictable, i.e. both readable and understandable, and mediate a common view of the system to engineers in any field, or to managers who are not only creating the model and the software itself, but also reviewing the software in the system. The model must not require infinite patience for special training to review the specification, because detection of subtle problems needs many people’s professional eyes and senses. Zimmerman and Leveson have examined readability of several modeling language including SpecTRM-RL (ref. 10).

[image: image5.wmf]SUPERVISORY MODE

INFERRED SYSTEM STATE

Automation

Crew (Manual)

Isolation

Not Isolation

Pressure

Sensor (Main)

Cabin Presssure A

CONTROL MODE

Pressure

Sensor (Backup)

Cabin Pressure B

Relief Stop Sequence

Relief Start Sequence

Control Valve Position

Activated

Deactivated

Unknown

Isolation

Valve

Control

Valve

Isolation

Valve Open

Activated

Deactivated

Unknown

Control

Valve Open

Isolation Valve Position

Open(Variable)

Closed

Unknown

Open

Closed

Unknown

Control Valve Power

Isolation Valve Power

On

Off

Unknown

On

Off

Unknown

JEM Cabin

Pressure Control

Abstract Modeling: Needless to say, the earlier one can find problems, the better. At the beginning of the development phase, of course, most projects do not have any baseline specification documents, or even vague concepts. The formal model, therefore, must allow us to start building a model using very abstract information during the early phases. Most formal methods require microscopic information to build the formal model, whereas this information is not required in SpecTRM.

Executability: The model must always be executable and be able to be simulated at any level of refinement. As described above, the predictability of the model is an important factor, but at the same time model analysis tools also give us many opportunities to detect more complex problems in the system behavior, which can be hard to find for humans. SpecTRM allows us make a model of the systems behavior using any depth of refinement by simply filling in those items we want to analyze and simulate. Once we have built a model using SpecTRM, the model is always executable. We can modify the model at any time, and then execute it again. The process is very flexible, but steadily guided by the toolset. This iterative work is precisely the design process itself.

Although there might be other necessary attributes, the above aspects are key to a formal model particularly for space applications as lessons learned from our study show.

During the construction of this model, we also found a common problem in complicated space systems. Recent computer-based control systems often choose a hierarchical architecture with bus networks such as MIL-STD-1553B. To reach end-effectors and actuate them, the command messages must go through several layers of controllers, and several different algorithms must be used to calculate decisions made by each controller, and doing so generates some delays. In the JEM cabin pressure example, the following subsystem shown as boxes and environments have different modes shown as boxes in (fig. 4):

1) Automation Controller

2) Valve Controller

3) Valve

4) Actual Pressure in Cabin

5) Sensor

The automation controller defines its own mode based on whether a command is sent or not, or based on telemetries from end-effectors, such as a valve. In an emergency, the controller cannot wait for the mode change of the actual telemetry in a step-by-step fashion because of the time criticality.

[image: image6.wmf]Task Model

Select higher

spin rate

Stop

Steady Rotation

Spin rate >= Target rate

Spin-up

Spin-down

User Model

Spin rate <= Target Rate

Spin rate > Speed Limit

Spin rate > Speed Limit

Spin rate > Speed Limit

Select new

profile

Select lower

spin rate

Select spin

rate

Select new

profile

Select new

profile

Spin rate < Target rate

increase spin

rate according

to profile

decrease spin

rate according

to profile

Spin rate > Target rate

Maintain &

Monitor rate

Crew in Centrifuge

Crew in ISS

Maintain &

Monitor rate

Stored Command

Operation

Request

increasing rate

Increasing

rate

Select higher

spin rate

Request

decreasing rate

Decreasing

rate

Select lower

spin rate

Ground Operator

Select higher

spin rate

Emergency

Stop

Loss of Spin

Control

Emergency

Stop

Maintain &

Monitor rate

Spin Control Model

Emergency

Stop

Emergency

Stop

Emergency

Stop

Stored Command

Operation

Planned rate

increasing

Select lower

spin rate

Planned rate

decreasing

Select higher

spin rate

Select lower

spin rate

Planned rate

decreasing

Planned rate

increasing

Emergency

Stop

Loss of Spin

Control

Emergency

Stop

State

Transition

Event

Action

Communication

Point

Figure 4. Modes (dot-lined box) in each component (box)

For example, after receiving a command from the automation controller, it will take several minutes for the valve movement to complete. The sensor ignores data changes from reading actual cabin pressure for several seconds to cancel white noise in data and make the control loop stable. Theoretically each controller should use the data that is the closest to the actual state if possible, but most systems cannot use such data because of time criticality, physical impossibility, or resource limitation. Using other blackbox models of the hazard-related components, the SpecTRM toolset can detect such inconsistencies of modes by simulation, and can verify the appropriate behavior and correct timing.

Model-Based Development Process
We have studied the applicability of SpecTRM in the development process of safety-critical on-board software, and especially how SpecTRM contributes to space-specific software products and processes. In particular, a model-based development process using SpecTRM is proposed as part of the development process itself.

An example is extracted from the Centrifuge. The Centrifuge is a laboratory for studying gravitational biology to test and demonstrate the operability to handle biological specimens in a manned space environment and technology for a large rotating payload. The Centrifuge is to be delivered on orbit in 2006, by a U.S. Space Shuttle. This project is unique in terms of organization and pressure on both schedule and cost. All models we built in our work and described in this paper are based on the draft system specification document of the Centrifuge, as it is still in the early design phase. No software design information of the CR has been released yet. An illustration of how our SpecTRM can be used in hazard analysis follows.
Hazard Analysis:

A hazard of “Impact/Collision due to Rotating Equipments” in the CR has been chosen here as an example. The CR is the largest (2.5m diameter) rotating payload in the ISS to generate a gravity field in the ISS as shown in figure 5. The habitat maximum mass of the CR is 116 kg, and the artificial gravity is 0.01-2.00g (0.01g increments).

[image: image2.wmf]

Figure 5. Outline of the Centrifuge Rotor (ref.11)

Information from the hazard analysis is presented in level 1 of the intent specification as follows:

	Hazard:

Impact/collision due to rotating equipment:

Contact with rotating equipment during operation or maintenance or impact/collision with fragments generated by fracture of rotating machinery could result in injury or loss of the crew.

A part of a Fault Tree Analysis (FTA) is shown in figure 6:

	1. Impact/collision due to rotating equipment

OR Contact with rotating equipment
 OR Crew access to a habitat during rotating

 ……….

 Fracture and scatter of rotating equipment
 OR

 ……….

Over-speed of the Rotor due to loss of spin control

OR The CR controller continues to accelerate rotor. (FTA-1.2.2.1)
 ………….
 ……….

 ………………..

Figure 6. A part of the FTA of the CR

In the intent specification, the FTA information includes the software fault tree analysis (ref. 12) in order to clearly define safety constraints for the software functions. All descriptions in the intent specification can be linked explicitly by tags, e.g. FTA-x (Line x of Fault Tree Analysis), SC (Safety Constraints), OP (Operator requirements, assumption, and constraints), G (goal), or by setting a linkage like a hyperlink in the tool. Based on information in the hazard analyses, we can also define safety constraints such as:

SC1: The CR must stop the spin motor if over-speed is detected. (↑FTA-1.2.2.1)

In addition to the hazard information, other high-level information, such as system goals, operator requirements, high-level functional requirements, assumptions, and limitations can be described in level 1 of the intent specification using readable natural language. One advantage of using SpecTRM is that all such information, even in level 1, does not need to be determined during the early development phases such as the requirements definition phase or preliminary design phase. Whenever we want to add or modify the information, it is possible to do so.

Applicability to Development Process:

To date, one reason why formal methods have not been used widely is the difficulty of applying the methods to the development process. For example:

1) Additional huge effort is required for formal modeling and formal verification, because the activity is not suitable for the existing development processes.

2) Phases or stages in which the formal methods can be applied are limited and intermittent.

As mentioned before, SpecTRM offers a formal but very flexible specification language. Instead of starting with documentation, we can in parallel start modeling as defined in level 3 of the intent specification. The system and the model can be refined or decomposed iteratively, and then defined in level 1 when the conceptual design is mature. This is surprisingly similar to real industry development. There is a very strong possibility that the intent specification can replace all documentation, i.e. software requirements, design specifications, interface definition documents, test plan/specifications, analysis reports, and operational documents. SpecTRM can work as the safety data information center for use of safety data in certification and other specialized safety approvals required in MIL-STD-882D (ref. 13).

Current development processes of complex software without formal modeling are “error-prone”. For example, with respect to interface coordination between different systems and/or components, we used to spend many days trying to understand and review thousands of pages of an interface definition document, which is hard. It takes too long to coordinate and review the interface. The coordination work is often across companies or countries that have different development processes. Interface mistakes are well known to cause most of the failures in space systems. To avoid problems, executable SpecTRM blackbox models, i.e., Input Value, Output Command (fig. 7), can be used for interface coordination.

The SpecTRM model-based process is similar to rapid prototyping and the spiral development process, but is suitable for waterfall development process, as well. The intent specification and the SpecTRM features have been in (ref. 14) compared with NASA’s software safety standard. The comparison shown in table 1 tells us that SpecTRM is suitable to use in the software safety standard process.
Figure 7. Blackbox model of Output command

During design reviews or safety reviews, it is almost impossible for the reviewers to check all documents and understand the system design, and needless to say, it is much harder to understand the software behavior even in the software specific meeting during the safety review. Because of the necessity of reviews by various engineers and managers, Leveson suggests that communication with management and understanding by management must play a key role in any accident model. When we use a model-based process using SpecTRM, they can review the intent specification and find problems even if the structure or the behavior of the controllers and their software is complicated. SpecTRM contributes to the improvement of review and communication quality.

Human-Centered Process:

Six types of “mode confusion” have been identified by Leveson as causes for computer-human related accidents (ref. 15). The six types of mode confusion can be detected by a human-centered process using SpecTRM (ref. 16). To detect these design problems, we must build the following models as shown in level 3 of figure 1.

User model: a model of the automation behavior (expected system behavior): this model is necessarily a simplification or abstraction of the actual possible automation behavior.
Task model: an operator task model resulting from a task analysis that identifies the major tasks of the human controller and then breaks these down into subtasks
Blackbox model: a system behavior model from specifications
The user model can be used as the core model of model-based development process in a human-centered approach. The CR’s user model and the task model created using a visual task modeling language (ref. 17) are shown in figure 8. Executing these models, we can find potential mode confusion cases. These CR models identify a difficulty in multiple authorities such as crews, ground operators, and controllers.
 Figure 8. User model and task model of the CR

Table 1. Applicability table of SpecTRM to NASA software safety standard (ref. 14)

	NASA Software Safety Standard (NASA-STD-8719.13A)
	Intent Specification / SpecTRM tool

	System safety analysis

Preliminary Hazard Analysis, software safety analysis to define safety-critical software (potential cause, or supporting the control of a hazard) and software safety requirements through the project life cycle.

Software safety
The objective is to ensure that safety is considered throughout the software life cycle.
Software safety tasks by life cycle phase

Software safety planning
Planning shall be documented in Software Management plan or Safety Management Plan
Software Requirements Specification Developments

· Development of software safety requirements

· Analysis of software requirement for potential hazards.

· Test planning is begun.

Software architectural design

This design process shall include identification of safety design features and methods

Software detailed design

Low-level design for the software units, safety-related information shall be into all user manuals.

Development of test procedure

Software implementation

Code, which shall implement the safety feature and methods developed during the design process

Software integration and acceptance testing

Testing to verify of software safety requirements including hazard verification, Acceptance testing verify in conjunction with system hardware and operators.

Software operations and maintenance

When changes are made, performing hazard analysis, updating software safety requirements and specification, design, and operator document, regression testing

Phase independent tasks

Safety requirements traceability

To trace the flow down of the software safety requirements to design, implementation, and test

Discrepancy reporting and tracking

Closed-loop tracking of safety-related discrepancies, problems, and failures.

Software change control

All changes, modifications, and patches made to requirements, design, code, systems, test plans, procedures, or criteria shall be evaluated to determine the effect of the change on system/subsystem safety.
Safety program reviews

Supporting System safety review

Software safety analysis

Software safety requirements analysis

 To identify software requirements that are safety-critical, and ensure the correctness and completeness
Software safety architectural design analysis

 To ensure the correctness and completeness, and test coverage
Software safety detailed design analysis

To ensure the correctness and completeness and ensure test coverage, safety-related information fro User’s Guide
Code safety analysis

To ensure the correctness and completeness, identify potentially unsafe states, and ensure test coverage

Software test safety analysis

 Test result shall be analyzed.

Software change analysis

To evaluate whether the change could invoke a hazardous state, affect a hazard control, increase the likelihood of hazardous state etc.
	In level 1 of the intent specification, the hazard analysis data can be described including software fault tree analysis. The software safety requirements can be described in level 1 as safety constraints.

All life cycle activities can be treated as the appropriate level of intent, refinement, or decomposition.

The planning can be included or referenced in the “Program Management Plan” or “System Safety Plan” parts of the intent specification.

The software safety requirements can be described in level 1 as safety constraints. Test planning can be described in level 5. Formal Analysis of requirements can be performed in level 3 with a blackbox behavior.

The level 2, ”System design principle”, mainly shows such design features and methods.

The level 3, “ Physical and Logic Design Representations”, shows detailed design. The safety information for “User manual” can be described in level 5 as well as test procedures.

The code is described in level 5. Unit testing information can be stored at V&V section in level 5

The testing information can be described in level 5.

The operation information is described in level 6. When changes are made in the intent specification, all levels of information can be modified. The tools set assists us to identify the parts affected by the changes, using the traceability functions.

Using tags or linkage, we can define all requirements traceability down to any level and any words in the specification.

There is currently no function for tracking itself, but we can indicate which parts have open issues and the status. Discrepancy reporting and tracking is planned for future versions of the SpecTRM tools.

All changes made to any part of the intent specification can be analyzed for their effect using the traceability information.

The intent specification provides safety information to support safety review, because all descriptions in the intent specification are written in natural language English, or readable SpecTRM-RL.

In addition to such manual analyses, the tools provides or will provide several tool analyses using formal models in level 3.

· Testing scenarios & results simulation & analysis

· Completeness and consistency analysis

· Software deviation analysis

· Mode confusion analysis

Thus, there are many benefits of readability or model analysis. In the SpecTRM toolset, many powerful model analysis tools such as completeness and consistency analysis tools, and deviation analysis tool have also been developed (refs. 18-19). The operator task model can be translated into SpecTRM-RL as one component in the system. The SpecTRM-RL model of the operator task can execute together with other components blackbox models for formal verification. However, we need to carefully model it, as it is difficult to enforce identical repetitive critical actions on the human.

Conclusions
By modeling system of realistic complexity, we have identified the necessary attributes of a formal model for space application; i.e. predictability, abstract modeling, executability, and ease of construction, and have concluded that SpecTRM is a toolset that possesses these attributes. SpecTRM has also been compared by current software safety standards and has proven suitable for existing development processes. The methodology can potentially be applied to any type of safety-critical system and in any phase of development. The application of SpecTRM allows us to analyze the system behavior correctly and easily. The potential uses of this modeling approach is summarized below:

a) Conceptual system design, which is done at the beginning of the development phase

b) Reverse engineering including accident investigations or problem corrections

c) Shadow process as the IV&V

d) A part of the development process itself

Our experience here has taught us several lessons about how to use an intent specification and executable model such as how to build a model, how to detect problems, and tips on constructing an intent specification.

The model-based development process proposed here seems promising with respect to improvement of the software development process of a safety-critical system, as it allows engineers or managers to understand the formal behavior of the system and analyze it with powerful tools from the beginning of the development process. New types of errors such as mode confusion can also be identified by model analysis.

These case studies have also identified possibility to avoid some redundant architecture although any example is not described in this paper. Today, designers often choose a redundant architecture for computers and software in a critical system (e.g. backup controller, multiplying hazardous commands, and N-version software) as a design solution. The redundant computer system not only increases cost, weight, electric power, and thermal source, but also introduces more complexity and new errors into the system. One reason why the redundant architecture solution is chosen is the difficulty encountered in analyzing precise software behavior for all possible cases. Instead of choosing a redundant design solution, by using SpecTRM, we can focus on reasonable faults in the software affecting a hazard and solve it without redundancy or examine the reasons for redundancy needs. Thus, the accident model analysis by SpecTRM is very significant for space application.

Future Work

We will continue to perform case studies to develop more beneficial approaches to system specification, particularly in the area of task analysis and maintenance. SpecTRM software tools are continuously evolving and including new features.

Development processes are moving to using simulators to confirm design correctness from early development. To establish useful interfaces with other simulators, we would like to study how the toolset works with a standardized interface of a simulation such as IEEE1516-HLA: High Level Architecture for Modeling and Simulation.

References

1. N. Leveson and J. Reese, SpecTRM: A System Engineering Environment, Digital Aviations Systems Conference (DASC), 1998

2. N. Leveson, Intent Specification: An Approach to Building Human-Centered Specifications, IEEE Transaction on Software Engineering, January 2000

3. N. Leveson, M. Heimdahl, and J. Damon Reese, SIGSOFT FOSE '99 (Foundations of Software Engineering), September 1999
4. N. Leveson, L. Alfaro, et al., Demonstration of a Safety Analysis on a Complex System, Software Engineering Laboratory Workshop, NASA Goddard, December 1997
5. A. Dupuy, N. Leveson, An Empirical Evaluation of the MC/DC Coverage Criterion on the HETE-2 Satellite Software, Digital Aviations Systems Conference (DASC), October 2000
6. M. Zimmerman, M. Rodriguez, N. Leveson et al., Making Formal Methods Practical, Digital Aviations Systems Conference (DASC), October 2000
7. S. Easterbrook and J. Callahan, Formal Methods for V&V of partial specifications: An experience report, IEEE International Symposium on Requirements Engineering (RE’97), 1997

8. S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton, Experiences Using Lightweight Formal Methods for Requirements Modeling, IEEE Transactions on Software Engineering, Jan. 1998
9. PVS System Guide, SRI International, Sep. 1999

10. M. Zimmerman, Investigating the Readability of Formal Specification Languages, May, 2001

11. Centrifuge Outline Information Homepage:

http://yyy.tksc.nasda.go.jp/Home/Projects/Centrifuge/index_e.html
12. N. Leveson, Appendix B, NASA-GB-1740.13-96, NASA Guidebook for Safety Critical Software
13. MIL-STD-882D, System Safety Program Requirements, Feb. 2000

14. NASA-STD-8719.13A, Software Safety Standard, Sep. 1997

15. N. Leveson, L. Pinnel, et al. Analyzing Software Specifications for Mode Confusion Potential, Workshop on Human Error and System Development, March 1997
16. M. Rodriguez, M. Zimmerman, N. Leveson, M. Katahira, et al., Identifying Mode Confusion Potential in Software Design, Digital Aviations Systems Conference (DASC), October 2000
17. M. Brown and N. Leveson, Modeling Controller Tasks for Safety Analysis, Workshop on Human Error and System Development, April 1998
18. M. Heimdahl, N. Leveson, Completeness and Consistency Analysis of State-Based Requirements, IEEE Transactions on Software Engineering, May 1996
19. J. Reese and N. Leveson, Software Deviation Analysis: A “Safeware” Technique, ICSE, May 1997
Biography
Masafumi Katahira, Visiting Engineer, Software Engineering Research Laboratory, Department of Aeronautics and Astronautics, MIT, 77 Massachusetts Ave. Room 33-407B, Cambridge, MA 02139-4307, USA, telephone - (617) 258-5046, facsimile - (617)258-0863, e-mail - Katahira@mit.edu
Katahira received a MS degree in computer science. He was engaged in avionics design for the Japanese Launch Vehicle and the Japanese Experimental Module (JEM) of the International Space Station in NASDA (Japanese Space Agency).
Nancy G. Leveson, Professor, Department of Aeronautics and Astronautics and Department of Engineering Systems, MIT, 77 Massachusetts Ave. Room 33-313, Cambridge, MA 02139-4307, USA, telephone – (617) 258-0505, facsimile - (617)253-7397, e-mail - Leveson@mit.edu
Prof. Leveson received all her degrees, in math, management, and computer science, from UCLA (Ph.D. 1980). Prof. Leveson started a new area of research, software safety.

User Model

Project Management Plan & Status Information

Management

Level 0

Information necessary for and generated during operations

System Operations

Level 6

Analyses & Verification

Components

System

Operator

Environment

Software Code,

Hardware Assembly Instruction

Training Requirements (Plan)

Software Design,

Hardware Design Spec.

Verification Requirements

HCI design,

Operation Manual

Task Model

Blackbox Model (Spec. Model)

Testing Requirements

Task Procedures

Environment

Testing and Validation Plan

etc.

I/F Control & Displays

Logic &

Principle

System Components

Decomposition

Refinement

Intent

General Description,

Hazard Analysis

etc.

Tasks,

Procedures,

HCI I/F Reqs.

High Level Requirements,

System Goals,

Limitation,

Constraints (safety, non-safety)

Assumptions

Constraints

Level 5

Level 4

Level 3

Level 2

Level 1

� EMBED Visio.Drawing.6 ���

State Value

Related Inputs: Cabin Pressure A

Timing Behavior:

DEFINITION

= Activated

Operating Mode = Isolation�
�
T�
�
Cabin Pressure A (sensor) ≥ 15.2�
�
T�
�

= Deactivated

Operating Mode = Isolation�
�
F�
�
*�
�
*�
�
Command executing �
�
F�
�
*�
�
F�
�
Event Flag = True�
�
F�
�
T�
�
*�
�
All sequence is done�
�
F�
�
*�
�
T�
�

= Unknown

Startup�
�
T�
�

Output Command

Timing Behavior:

 Initiation Delay:

Feedback Information:

 Variables:

 Value:

 Min. time (latency):

DEFINITION

= Open

Isolation Valve Power = On�
�
T�
�
Relief Start Sequence = Activated�
�
T�
�

= Closed

 ………………..

Physical Representation

Isolation Valve Open

Relief Start Sequence

Design Representation

Blackbox

Behavior

System Principles

System Purpose

Output Command

Timing Behavior:

 Initiation Delay: 1 sec (TBR)

Feedback Information:

 Variables: Telemetry of spin rate

 Value: 0

 Min. time (latency): 15 min (TBR)

DEFINITION

= Off

Spin rate telemetry = Over-speed�
�
T�
�
*�
�
Motor Enable Command = Disable�
�
*�
�
F�
�

= On

Spin rate telemetry = Over-speed�
�
F�
�
Motor Enable Command = Enable�
�
T�
�

Stop Power Supply to Motor Driver

� EMBED Visio.Drawing.6 ���

_1051507101.vsd

_1051696775.vsd

_1051525686.vsd

_1050669296.doc
[image: image1.png]Active Balance Mass

Direction of Rotai

