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Abstract

Standard safety analysis techniques are often ineffective when computers and di-
gital devices are integrated into plant control. The Safeware methodology and its
set of supporting safety analysis techniques (and prototype tools) includes modeling
and hazard analysis of complex systems where the components may be a mixture of
humans, hardware, and software. This paper describes one of the Safeware hazard
analysis techniques, Software Deviation Analysis, that incorporates the beneficial fea-
tures of HAZOP (such as guidewords, deviations, exploratory analysis, and a systems
engineering approach) into an automated procedure that is capable of handling the
complexity and logical nature of computer software.

*This work was partly funded by NASA /Langley Grant NAG-1-1495, NSF Grant CCR-9396181, and the
California PATH Program of the University of California, in cooperation with the California Department
of Transportation and the U.S. Department of Transportation.



1 Introduction

The introduction of computer control in plants has created new and unsolved problems
in ensuring safety. For the past 16 years, Leveson and students have been studying
ways to extend and adapt to software the methods used to control risk in the larger
system within which the software is embedded. Although engineers have developed
various types of hazard analysis techniques for electromechanical systems, these tech-
niques do not apply when computers are introduced to control dangerous and complex
systems. Our goal is to take the basic procedures of system hazard analysis and to
translate them into techniques and tools that can be applied to systems containing
software and to the software development and validation process.

This work has resulted in an approach, called Safeware, to enhance safety in sys-
tems composed of electromechanical, computer, and human components. The basic
methodology involves applying software hazard analysis and hazard control procedures
throughout software development, based on the identified system hazards [2]. These
efforts are closely tied to the system level hazard analysis and control. Early and con-
tinuing analysis procedures guide and direct the software as it is developed instead of
simply attempting to verify safety after the software is completed. The methodology
includes a variety of analysis techniques and tools (see Figure 1). This paper describes
one technique, Software Deviation Analysis, that extends basic HAZOP-like analysis
to systems containing computer components.

2 Software Deviation Analysis

HAZard and OPerability analysis (HAZOP), a review procedure developed for the
British chemical industry in the 1950’s, is used widely but it has several limitations
when applied to newer, high-technology systems. First, it is time- and labor-intensive
[2], in large part due to its reliance on group discussions and manual analysis pro-
cedures. Second, HAZOP analyzes causes and effects with respect to deviations from
expected behavior, but it does not analyze whether the design, under normal operating
conditions, yields expected behavior or if the expected behavior is what is desired.

A third limitation arises from the fact that HAZOP is a flow-based analysis. De-
viations from within components or processes are not inspected directly; instead, a
deviation within a component (as well as a human error or other environmental dis-
turbance) is assumed to be manifested as a disturbed flow [4]. A purely flow-oriented
approach may cause the analyst to neglect process-related malfunctions and hazards
in favor of pipe-related causes and effects.

Because HAZOP concentrates on physical properties of the system [4], it is not
directly applicable to analyzing computer input and output. Several manual techniques
have been suggested to extend HAZOP to incorporate inspection of computer hardware
and software. In each of these, the procedure is essentially identical to a standard
manual HAZOP except that the guide-words are changed and the model of the system
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Figure 1: Components and interactions in a CAD environment for safety-critical systems.

may differ from the original pipe-and-process diagram.

These methods suffer from two weaknesses with respect to analyzing software.
First, being manual techniques they depend on human understanding of the proposed
software, which can be quite limited. Whereas the components of a pipe-and-process
diagram usually conform to straightforward and well-understood laws, each instance
of a software controller can have a complex and novel behavior: The behavior of pumps
and valves is not nearly as complex as software can potentially be.

Second, the manual techniques adhere to the HAZOP principle of identifying de-
viations in the connections, i.e., the computer inputs and outputs only. Accordingly,
they do not provide guidance for following deviations into the control logic. The task
of determining how a deviation in a software input is manifested at its outputs is left
wholly up to the analyst.

Software Deviation Analysis overcomes some of these deficiencies. Like HAZOP,
Software Deviation Analysisis based on the underlying model that accidents are caused
by deviations in system parameters. Using a blackbox software or system requirements
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Figure 2: Overview of SDA procedure.

specification, the analyst provides assumptions about particular deviations in software
inputs and hazardous states or outputs, and the procedure automatically generates
scenarios in which the analyst’s assumptions lead to the specified deviations in the
outputs.

Figure 2 shows an overview of the SDA procedure. The analyst provides a formal
software requirements specification, which the procedure automatically converts into
a more basic representation, called a causality diagram. 'The causality diagram is
an internal data structure that encodes causal information between system variables,
based on the specification and the semantics of the language in which it is written. The
simplicity of causality diagrams makes the search algorithm more straightforward and
easier to adapt to a new specification or programming language. Causality diagrams
may also be helpful to the analyst in understanding how system variables are inter-
related.

The automated procedure uses deviation formulas, which define how deviations are
related. This information is incorporated directly into the causality diagram to create
an augmented causality diagram. SDA then uses qualitative mathematics on the aug-
mented causality diagram to evaluate deviations. Qualitative mathematics partitions
infinite domains into a small set of intervals and provides mathematical operations on



these intervals. The use of fixed intervals simplifies the analysis compared to iterations
over the entire state space. It also lends itself naturally to the qualitative nature of
deviations, such as “slightly too high.”

The augmented causality diagram, input deviations, and a list of safety-critical
software outputs is passed to the search program, which constructs a tree of states.
The state formed by the input deviations is the root of the search tree. Leaves are
either deadend searches (in which the state does not contain any deviations) or states
containing safety-critical deviations.

The output of the SDA program is a list of scenarios. A scenario is a set of
deviations in the softwareinputs plus constraints on the execution states of the software
that are sufficient to lead to a deviation in a safety-critical software output. The
deviation analysis procedure can optionally add further deviations as it constrains the
software state, allowing for the analysis of multiple independent failures (leading to
the independent deviations.)

The next sections describe the components of deviation analysis—causality dia-
grams, deviation formulas, qualitative mathematics, and the analysis procedure. Sec-
tion 7 provides a simple example.

3 Causality Diagrams

Figure 3 shows an example of a simple feedback system and the corresponding causality
diagram. A requirements specification for the software controller contains a black-box
model of the relationship (function) between inputs (the measured system variables)
and outputs (commands to change the controlled system variables).

The system shown in the figure is a tank equipped with a variable-aperture valve.
The system variables are the tank pressure, the flow of material through the tank,
and the aperture of the valve. To simplify the example, pressure is computed as the
quotient of flow over aperture. The controller increases or decreases the valve opening
by ten units if the pressure is above the maximum of 250 units or below the minimum
of 100 units, respectively.

The causality diagram in the example contains twelve nodes and sixteen edges.
Three of the nodes represent the system variables. Pressure is a quotient function,
with the numerator edge originating from Flow and the denominator edge originating
from Aperture. Aperture is an interesting node in that its current value depends on
its previous value, i.e., it has state. The size of the valve aperture is equal to its
previous value (indicated by a dashed line) plus one of {—10,0, 10}, as provided by
the controller.

The behavior of the Flow variable is left unspecified. The procedure treats un-
specified variables as random inputs to the system and constrains them as needed to
propagate deviations.

The remaining nodes comprise the controller (which for process-control software
would be a computer, usually performing a much more complex function.) The pres-
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Figure 3: Causality diagram example

sure reading is compared to minimum and maximum values (the “<” and “>” nodes,
respectively). Note that each node is a function: For example, the domain of the
inequality functions is a pair of numbers and the range is a boolean.

The nodes represented by are called selection nodes. The selection

function is defined as follows:
R I if b
b?zx:y= { g if —b

The selection function is an important node in constructing the causal relationships
of process-control software, since it maps from a boolean value (e.g., some control
decision) to numeric values (e.g., output to an actuator.)

Following the edges from the subtraction node (the output of the controller) back-
ward to the pressure reading, one gets the expression

0 otherwise 0 otherwise

{ 10 if Pressure’ > 250 } B { 10 if Pressure’ < 100 }

where Pressure’ represents the previous value for pressure. This value is output to the
valve actuator.

The causality diagram can get complex, but it is generated automatically from a
state machine specification. Each node in the specification is linked to its corresponding



node in the causality diagram, so that the results of the analysis can be translated from
the causality diagram back into the language of the specification, avoiding the need for
the analyst to comprehend or even see the causality diagram.

4 Deviation Formulas and Augmented Diagrams

The automated procedure uses deviation formulas, which define how deviations are
related. This information is incorporated directly into the causality diagram to create
an augmented causality diagram.

The concept of a deviation needs to be defined both for logical and numeric vari-
ables. Booleans are straightforward since they can only take two values; consequently,
an actual value is either a deviation from the correct value or it is not. The “exclusive
OR?” operator satisfies this definition. Actual @ Correct is true (a deviation) when
Actual is different from Correct and false when they are the same.

A numeric deviation is defined as the difference between the actual and correct
values, i.e., the amount added to or subtracted from the correct value to obtain the

actual value:
Xd == Xa - Xc;

where X is the variable, and the subscripts indicate deviation, actual, and correct
values, respectively.! For example, if a pressure reading should be 10 p.s.i. but is
actually 7 p.s.i., then the deviation is -3 p.s.i.

To relate these values back to the causality diagram, one could assign some correct
values and use the relationships expressed in the causality diagram to derive other
correct values. Actual values can be derived from other actual values in the same way.
For example, Pressure, = Flow,/Aperture,.

Deviation values cannot be calculated using the normal relationships between sys-
tem variables: Pressure; is not always equal to Flowy/Aperture;. (In fact, if the
actual value of Aperture is correct, then Aperture; = 0 and this ratio is undefined.)
The causality diagram must be augmented with deviation formulas so that the re-
lationships between deviations are explicitly and properly represented. A deviation
formula is the way by which the deviations of a function may be determined from the
deviations and actual values of its inputs.

A complete set of deviation formulas and their derivations can be found in [3]. The
augmented causality diagram of the tank example is rather larger than the original dia-
gram, and the reader will not be burdened with a complete example, but the fragment
representing Pressurey is shown in Figure 4.

'Note that the deviation could be calculated in other ways. For example, Xy could be the ratio %

Under this definition, a value of X4 = —0.5 would mean that X, has the opposite sign of and one-half the
magnitude of X.. While this formula is quite useful, X4 does not have a value when X, = 0 and it is

virtually meaningless when X, = 0.
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Figure 4: A fragment of the augmented causality diagram for the example, showing the
causal relationship between deviation in pressure and the deviations and actual values of
flow and valve aperture.

5 Qualitative Mathematics

SDA uses qualitative mathematics on the augmented causality diagram to evaluate
deviations. Qualitative mathematics partitions infinite domains into a small set of
intervals and provides mathematical operations on these intervals. The use of fixed
intervals simplifies the analysis compared to iterations over the entire state space. It
also lends itself naturally to the qualitative nature of deviations, such as “slightly too
high.” The analyst may choose to refer to qualitative set elements, to the intervals
they represent, or to symbolic labels such as “a little low,” “too high,” or “very high.”

In a manual HAZOP, analysts need to determine the result of a particular deviation.
To do this, they investigate what will definitely occur given the input deviation as well
as what else could occur under specific conditions—i.e., they make assumptions about
the system state. They must also back-track occasionally to determine whether two
separate assumptions are consistent, i.e., whether the scenario they are proposing is
realistic. These three types of manual search are also included in the SDA procedure
as three functions for each operator appearing on causality diagram nodes: a forward
definite function, a backward definite function, and a forward assumptive function.

The forward definite function is simply the operator itself, but applied to sets of
intervals. Allowing operations over sets of intervals rather than single intervals greatly
reduces the size of the search tree, since a separate branch does not have to be created
for each combination of values.

The forward assumptive function is used only on deviation nodes (the nodes created
for the augmented diagram). If one of the inputs to a node is a deviation but the value
of the node itself is unknown, then the forward assumptive function attempts to find



values for the other inputs that will cause the deviation to propagate to the node.
For example, suppose that a deviation node is the product of two other nodes, one of
which is too high and the other is unknown. In order to propagate the high value,
the unknown input is assumed to be negative or positive, but not zero, because a zero
will cause the output to be zero, masking the deviation. With the new constraint the
output is now either too high or too low.

The backward definite function is essentially the inverse relation of a node’s oper-
ator. See Reese [3] for definitions of these relations.

The augmented causality diagram, input deviations, and list of safety-critical vari-
ables is passed to the search algorithm, which constructs a tree of states. The state
formed by the input deviations is the root of the search tree. Leaves are either dead-
end searches (in which a state does not contain any deviations) or states containing
safety-critical deviations. The output of the SDA procedure is a list of the paths from
the root state to all leaves with safety-critical output deviations.

6 Analysis Procedure

The SDA procedure is a forward search procedure—it starts with a deviation in the
software’sinput environment and attempts to find ways in which the deviation can lead
to hazardous software outputs. As discussed in the overview, the analysis starts from
a system specification, which is converted automatically into an augmented causality
diagram. The analyst provides two other pieces of information corresponding to the
starting and ending points of the search: (1) an initial system state, including at least
one deviation, and (2) the outputs that are safety-critical. The procedure searches
forward from the initial state, attempting to find statesin which a safety-critical output
deviation occurs.

The search procedure is quite complex, and we can only describe it briefly here.
The forward and backward definite functions described earlier are used to construct
a chain of states representing what will definitely result from the initial state. This
chain of states is termed a scenario because it describes a sequence of events that the
system will follow given the initial state. The chain begins with the initial state and
terminates with a state that either contains a safety-critical deviation or no deviation
at all. A final state that contains a safety-critical deviation indicates that the analyst’s
input deviations will always result in a hazardous deviation.

Whether or not the chain leads to a hazardous deviation, the procedure can continue
the search by constraining the software state using the forward assumptive function
described earlier. Constraints can be added not only to the initial state but to every
state in the chain. The forward and backward definite functions are applied to these
additional constraints to create another chain of states. The new chain branches from
the state to which the constraints were added and ends in either a safety-critical
deviation or a dead-end.

Further constraints can be added to the new state chains. The analysis procedure



continues in a breadth-first manner, building a tree of state chains, each ending in either
a dead-end or hazardous deviation. The depth of each leaf of the tree corresponds to
the number of additional assumptions the procedure made to reach that leaf. The
procedure finishes when it either runs out of constraints that it can make or the depth
reaches some predefined limit set by the analyst. Finally, the procedure provides the
analyst with scenarios by tracing each path from the initial state to all ending states
that contain hazardous deviations.

SDA has been applied to three real-world examples. It was first applied to the
Traffic Alert and Collision Avoidance System II (TCAS II), an avionics system de-
signed to provide pilots with collision avoidance information. The authors found that
when an incorrect identifier is received by TCAS (perhaps as a result of a transmis-
sion error) there are circumstances in which an evasive maneuver is not displayed to
the pilot when it should be. The procedure has also been applied to a developmental
aircraft guidance system and a proposed automated highway system with similar res-
ults. The time required to perform a search on these examples ranged from about 10
seconds to several minutes.

7 Example of the SDA Procedure

The basic procedure can be illustrated by a simple example from an actual project.
First, the analyst provides a formal specification, which in this case is a proposed
automated highway system for the California Department of Transportation?. The
automated highway system (AHS) directs automobiles to form groups within a lane,
called platoons. Each automobile has a software controller that directs the movement
of the car relative to the platoons. Figure 5 shows a page from the AHS specification,
written in Requirements State Machine Language (RSML) [1]. The relevant parts will
be explained shortly.

Next, the analyst identifies the safety-critical outputs. For simplicity, in this ex-
ample we will assume that all outputs are critical. The next step is to define the initial
input deviations. One of the input variables listed at the top of the AHS specification
is Num_vehicles_ in platoon, which is the number of automobiles that are in the same
platoon as the controller’s automobile. Suppose the analyst wishes to find out what
happens when this input variable is less than the actual size of the platoon.

For this model, the SDA algorithm identifies two scenarios in which the input
deviations lead to a safety-critical output deviation, one of which is presented here.?

The initial assumption, as stated above, is that Num_vehicles_in_platoon is too

?This research was supported by the Department of Transportation, and thus the models we have
analyzed so far are not related to the chemical process industry. However, the technique is generally
applicable to any control system software.

3The search for this example takes approximately 1.2 MB and 25 seconds on an Intel 80486DX2 at
66 MHz.
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Figure 5: A portion of the Automated Highway System example.
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Figure 6: A transition from the Automated Highway System. The analyst has assumed
that the variable Num_vehicles_ in _platoon is lower than the actual value.

low. This input is used by the automobile’s controller to determine whether to com-
mence a maneuver, specified by the transition from No Maneuver to Busy (refer to
Figure 6.) This transition is taken if the controller has been requested to merge two
platoons (the triggering event) and the guarding condition on the transition permits
the platoons to merge.* For this scenario, the SDA algorithm constrains the soft-
ware execution state in order to propagate the initial deviation through the transition,
causing the controller to enter Busy when it should not (a boolean deviation.)

The input variable Num vehicles is the number of vehicles wanting to merge with
the platoon and the first constraint on the software state that SDA makes is that
Num_vehicles is not too high, i.e., the value received is either the same as or less
than the proper value. This constraint ensures that the sum of the two inputs in the
fifth row of the table is too low. The deviation could be “masked” if Num_vehicles
were too high. The second constraint that the algorithm makes is that the fifth row
is true, namely, the maximum number of vehicles has not been exceeded based on
the information provided to the software. The third constraint is that the sum of
deviations for Num vehicles in platoon and Num vehicles exceeds the number of
empty positions left in the platoon. In other words, the fifth row should be false,
which it would be if the deviations were not present. The algorithm presents this logic

4The condition is represented by an AND/OR table, which is true if any of its columns is true. A
column is true if all of the rows that have a “T” are true and all of the rows with an “F” are false.
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in the following way (rearranged slightly for clarity):

MAX VEHICLES_IN_PLATOON
—value(Num_vehicles) <
—value(Num vehicles in platoon)

—dev(Num_vehicles)
—dev(Num vehicles in platoon)

where value() is the value read by the controller and dev () is the difference between
the actual and correct values (negative means too low.) The left-hand side of the
inequality is the number of spaces available according to the two inputs read by the
controller (Num vehicles and Num vehicles_in platoon.) The right-hand side of the
inequality is the size of the error (the deviation is negative, so the right-hand side is
positive.) The inequality therefore shows that the deviation is greater than the number
of spaces perceived to be available, and row five would be false if there had been no
deviation in the inputs, inhibiting the transition.

The fourth constraint that the algorithm generates is that (1) the controller’s auto-
mobile is the lead vehicle in the platoon, (2) the distance between the platoons is
sufficient, and (3) the automobile is traveling at a constant rate of speed. These are
the conditions in rows two through four, respectively, making the second column and
the entire condition true.

The final constraint generated by the algorithm is that the triggering event is
true, i.e., that a request has been made to merge platoons and the controller is in
state No_Maneuver. The transition is thus enabled and the output action Merge ok is
generated. Both the transition and output action are deviations since they should not
have occurred. Merge ok triggers the output that gives permission to merge platoons.
The resulting system state is a platoon that exceeds the threshold for safe platoon size.
Thus we have identified a scenario, i.e., deviations in one input plus constraints on the
software execution state that will lead to a hazardous output.

8 Conclusion

This paper has described a hazard analysis technique, software deviation analysis,
that incorporates the beneficial features of HAZOP (e.g., guide words, deviations,
exploratory analysis, and a systems engineering strategy) into an automated procedure
that is capable of handling the complexity and logical nature of computer software.

We have applied SDA to several realistic systems. Although more extensive exper-
imentation needs to be performed, the procedure appears to provide information that
is useful for requirements specification and review. Note that SDA is not intended to
replace standard certification methods such as verification and validation. However, as
an exploratory procedure, it provides important and timely information to the safety
and software analysts.
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